
RANGEFINDING
WITH A PLENOPTIC CAMERA

THESIS

Robert A. Raynor, 2nd Lieutenant, USAF

AFIT-ENP-14-M-29

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENP-14-M-29

RANGEFINDING WITH A PLENOPTIC CAMERA

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Physics

Robert A. Raynor, BS

2nd Lieutenant, USAF

March 2014

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.



AFIT-ENP-14-M-29

RANGEFINDING WITH A PLENOPTIC CAMERA

Robert A. Raynor, BS
2nd Lieutenant, USAF

Approved:

//signed// 4 March 2014

Col Karl C. Walli, PhD (Chair) Date

//signed// 7 March 2014

Col Matthew D. Sambora, PhD (Member) Date

//signed// 7 March 2014

Lt Col Anthony L. Franz, PhD (Member) Date



AFIT-ENP-14-M-29

Abstract

The plenoptic camera enables simultaneous collection of imagery and depth infor-

mation by sampling the 4D light field. The light field is distinguished from data

sets collected by stereoscopic systems because it contains images obtained by an N

by N grid of apertures, rather than just the two apertures of the stereoscopic sys-

tem. By adjusting parameters of the camera construction, it is possible to alter the

number of these ‘subaperture images,’ often at the cost of spatial resolution within

each. This research examines a variety of methods of estimating depth by deter-

mining correspondences between subaperture images. A major finding is that the

additional ‘apertures’ provided by the plenoptic camera do not greatly improve the

accuracy of depth estimation. Thus, the best overall performance will be achieved

by a design which maximizes spatial resolution at the cost of angular samples. For

this reason, it is not surprising that the performance of the plenoptic camera should

be comparable to that of a stereoscopic system of similar scale and specifications. As

with stereoscopic systems, the plenoptic camera has immediate applications in the

domains of robotic navigation and 3D video collection, though these domains may

be expanded in the future as technological advances extend the range over which the

camera accurately recovers depth.
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RANGEFINDING WITH A PLENOPTIC CAMERA

I. Introduction

Even amidst the technological marvels of the 21st century, the human vision sys-

tem remains arguably the most impressive of its kind known to man. Our eyes are

integrated together with a multitude of systems and procedures which give us a visual

awareness of our surroundings, encompassing aspects like structure, depth, motion,

contiguousness, texture, and more. Though no computer vision system may ever per-

fectly mimic these capabilities without major breakthroughs in artificial intelligence,

certain isolated aspects continue to move within the grasp of modern technology.

Depth perception is one of these aspects. In the human vision system, depth

information is obtained through a variety of means. Some of these means, such as

the intelligent evaluation of the apparent size of recognized objects or other aspects

of a scene, are well beyond the scope of this thesis. However, other methods make use

of a simpler, more attainable mechanism. For example, the displacement between a

person’s two eyes means that each eye renders a slightly different view of a scene. The

brain integrates these views together to provide a single image, along with a sense of

depth.

The information afforded in this manner plays an important part in how we in-

teract with the world, as is clear when one simply closes an eye. Upon doing so, it

immediately becomes more difficult to ascertain spatial relationships among objects

and textures in a scene and, in short, to interact with one’s surroundings.

This same is true with respect to platforms employed by the U.S. Air Force. The

coupling of depth information with imagery makes each more usable. In the context of
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remote sensing, depth information can be useful in the automated analysis of a scene,

as it provides an additional channel for use in image registration and segmentation.

Depth information can also be critical for understanding the dynamics of a region

and preparing operators who will be deploying to that location. Just as humans

employ depth information to assist in movement and collision avoidance, so depth

information can assist mobile Air Force systems in performing navigation. Indeed,

such information is critical for any autonomous system using imagery to interact with

its environment. The plenoptic camera is of interest to the U.S. Air Force because it

stands to provide a cheap and accurate means of supplying depth information in real

time to this wide variety of systems.

Like the human vision system, the plenoptic camera relies on the phenomenon of

parallax. Parallax refers to the apparent shift in an object’s location with respect

to its background and foreground when viewed along different lines of sight. In the

context of computer vision, parallax can be understood as the fact that, given two

cameras having optical axes subject to relative translation and rotation, an object’s

imaged location will shift relative to the optical axis in a depth-dependent manner.

In its dependence on the parallax effect, the plenoptic camera is comparable to a

slew of other passive ranging technologies. In stereovision systems, the parallax effect

is quantified in the disparity between the pixel location of an object between two

images taken from slightly different angles [1]. The process of triangulation is used

in conjunction with this information to provide a depth estimate for an object. In a

similar fashion, structure from motion (SFM) techniques determine disparity between

images taken as a camera moves relative to a scene in order to estimate depth [2].

Insofar as more than two views of an object are available, structure from motion

techniques provide denser sampling than stereoscopic devices. However, knowledge

of the change in camera position and orientation for a moving platform may be
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unknown or known with less precision than the relative orientation of the cameras in

stereoscopic systems, and uncertainties in camera location will introduce error into

the final depth estimation.

A less intuitive manifestation of the parallax phenomenon involves depth estima-

tion from defocus. In this problem, an image is analyzed to determine the depth-

dependent circle of confusion causing blurring at each image point. This circle of

confusion can be thought of as resulting from the difference in the appearance of the

scene (resulting from the parallax effect) when viewed through different portions of a

camera’s lens.

Thinking about defocus in this manner is a helpful primer for consideration of

the plenoptic camera. The plenoptic camera incorporates an array of microlenses in

front of a detector array in order to separate rays incident from different portions

of the main lens [3]. Isolating the light from one portion of the main lens allows

for creation of a ‘subaperture image,’ i.e., an image appearing as if taken from a

small subaperture of the main lens [4]. The collection of subaperture images can be

arranged into a 2D array, and disparities between successive images used to calculate

depth in a manner similar to structure from motion, but without the camera position

uncertainties associated with that technique. Thus, plenoptic camera ranging can be

usefully thought of alternately as a constrained form of structure from motion, or as

a variant of the depth from defocus problem.

The dense data set captured by the plenoptic camera, consisting of a collection of

images of an object, captured from an N by M grid of locations, is a construct that

developed within the image-based rendering community under the title of the ‘Light

Field’ [5]. As the availability of plenoptic cameras for easy recording of the light field

has increased, the concept of light field has seen growing interest within the computer
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vision community, and numerous approaches and algorithms have been developed for

estimating depth from the sampled light field [3][6][7][8].

The purpose of this research is to provide a framework for thinking about and

quantifying the ranging capabilities of a plenoptic camera. The plenoptic camera

design contains numerous degrees of freedom which affect different aspects of its

performance. Some of these effects are very pronounced and others subtle. Depth

estimation accuracy is also dependent on the content of the scene being imaged. Pas-

sive ranging systems typically have trouble with regions of a scene barren of features,

like walls in a building. The same is true for the plenoptic camera, which gives best

performance where image gradient magnitudes are high.

The goal of this research is to provide a description of the impact of these various

factors on the plenoptic camera’s depth resolving performance. This involves two

major areas of investigation. The first area of investigation concerns the sampling

characteristics of a plenoptic camera. Given a particular plenoptic camera geometry,

how does this geometry sample the continuous light field? What will the sampled light

field look like for a point at a known location relative to the camera? Answering these

questions requires a detailed look at the plenoptic camera geometry and sampling

characteristics.

Once the forward process of light field sampling has been defined, the range find-

ing operation is simply the reverse process of backing out the location of a point

responsible for the captured light field. In this domain we ask the question, how

well can the characteristic shape of a point source within the sampled light field be

identified and fit to a model which then yields depth information? Answering this

question requires that we engage with the modern image processing techniques which

have been applied to light field imaging and ranging, and seek to understand the

sources of error and uncertainty within these techniques.
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The overall contribution of the thesis is a set of equations which define the perfor-

mance of the plenoptic camera and its dependence of various parameters of interest, as

well as empirical testing which confirms and/or defines the scope of these equations.
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II. Background

Its ability to perform stereo ranging was the main feature noted by Adelson and

Wang when they first created the plenoptic camera [3]. Observing that the plenoptic

camera allowed for an object to be viewed through different sections or sub-apertures

of the main camera lens, they developed an algorithm to determine depth from the

resulting parallax shift in object location. Since this shift is manifest as a sloping

of lines when neighboring subaperture images are stacked on top of each other (see

Fig. 8), their algorithm incorporated image gradient to estimate the slope direction

within a region of the light field.

The potential to perform refocusing using light fields was first explored by Isaksen

et al. in the context of image-based rendering [9]. The refocusing operation consists

of nothing more than a shifted superposition of subaperture images in a manner which

counteracts the parallax effect for a given object depth. Not until the construction

of a hand-held plenoptic camera by Ng et al. was this capability demonstrated in

the context of light field photography with a plenoptic camera [10]. In principle,

range finding via refocusing involves the construction of a stack of refocused images

followed by a search for sharp features within each image to isolate depths which

contain objects.

The sheared projection which constitutes this refocusing operation bears strong

similarity to certain computed tomographic techniques employed in medical imaging.

In that context, projections of a density distribution obtained by radiographic tech-

niques such as x-ray scanning are used to recreate the original density distribution.

Here, the density distribution plays a role analogous to that of the light field, and

the projections, a role equivalent to that of the refocused images. Often, a useful

relationship exists between the distribution and its projections in a transformed do-

main such as the Fourier domain. In the medical imaging domain, such relationships
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can help simplify the process of reconstructing the density distribution, and subse-

quently rendering views of the object from different perspectives. In the domain of

light field imaging, this second aspect is most readily applicable. Ng et al. show that

image rendering performed in this manner can provide a significant reduction in the

computational cost of refocusing [11]. This is because refocused images are obtained

in the Fourier domain by extracting a 2D slice from the light field, as opposed to

the projection operation required in the spatial domain. A Fourier domain approach

to the depth-through-refocusing technique, demonstrated in [12], searches for images

having high spatial frequencies of large magnitude, as this suggests the presence of

sharp features associated with in-focus objects.

Plenoptic camera range finding also benefits from research performed on light

fields generated by methods predating the plenoptic camera. Light fields have been

traditionally collected using 2D arrays of cameras. A single camera mounted on a

gantry allowing for translation in two dimensions also allows for scanning light field

collection. Some of the first work with such data used edge detection and line fitting

to estimate light field slope, as in [6]. This technique is comparable to the section

concerning the application of the SIFT algorithm to light field ranging within this

thesis (See Section 4.3). More recent work with light fields gathered from track-

mounted cameras estimates local light field orientation by finding the slope along

which the light field shows high consistency (low variance) [7]. The uncertainty of

this approach is assessed in detail within this report. Some of the most sophisticated

techniques for employing light fields from plenoptic cameras involve the combination

a local slope estimator with a system of global constraint enforcement. The global

optimization framework employed in [8] employs the structure tensor to provide a

local slope estimate. The structure tensor, derived in [13], starts with the principle

that a region having a particular orientation should contain energy concentrated along
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a line in the Fourier domain. Orientation detection can be achieved by least squares

fitting to this line, which is an operation able to be performed entirely within the

spatial domain. The structure tensor itself achieves good local estimates compared to

other methods like the gradient method in [3]. The estimate is improved by employing

an optimization framework in which the cost of assigning a given depth takes into

account the ordering of objects, evidenced by occlusions, as well as certain other

features, such as the location of edges yielded via edge detection.
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III. Imaging Theory

3.1 Introduction

The dataset captured by a plenoptic camera is known as a light field [3]. The

light field is based on a geometric optics formulation of light by which it describes

the propagation of light energy in a space. Some of the earliest work with light

fields appears in the context of image based rendering. See [14] and [5] for detailed

descriptions of the light field within that context. The goal of this chapter is to

describe how the light field is captured by the plenoptic camera, and to examine

what the sampled light field will look like for a point source at some known location.

To this end, different subspaces of the light field allowing for easy visualization of

its structure will be discussed. The process of generating refocused images from the

light field will be considered within both the spatial and frequency domains. Finally,

the traditional plenoptic camera sampling geometry will be compared with that of

the ‘focused’ plenoptic camera, and a scheme for creating a focused plenoptic camera

with equivalent sampling characteristics to that of a traditional plenoptic camera will

be presented.

3.2 The Light Field within a Simple Imaging System

In perhaps its most basic form, the light field is nothing more than the radiance

distribution in a 2D plane. The radiance along a ray at the point (s, t) and in the

direction (θ, φ), defined according to Fig. 1, is given by [15]

L(s, t, θ, φ) =
d2Φ

dΩdA1cosθ
(1)
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Figure 1. The Light Field as a Radiance Distribution. The light field can be thought
of as the radiance distribution along a 2D plane. L(s, t, θ, φ) gives the radiance at the
position (s, t) and in the direction (θ, φ). This direction can be conveniently defined in
terms of a second point, (u, v), on a plane parallel to the original plane. Likewise, the
solid angle, Ω, used to normalize the radiance, can be given in terms of an area on the
second plane, A2, and the distance between the two planes, l.

where L has units of [W/cm2sr]. The angles in this equation can be defined con-

veniently by considering the intersection of the ray with a second plane positioned

parallel to the first. The geometry needed for performing this parametrization is pic-

tured in Fig. 1. We define Φ(s, t, θ, φ) as the radiant flux exiting the area A1 in the

(s, t) plane into the solid angle Ω, defined by the pyramid-shaped region in the figure.

The length, h of this region is also the hypotenuse of the right triangle with base

l and height o. The length of the hypotenuse is determined via the Pythagorean

theorem as

h =
√
l2 + (s− u)2 + (t− v)2. (2)

This allows for the angle, θ, to be defined implicitly as

cos(θ) =

√
l2 + (s− u)2 + (t− v)2

l
=

√
1 +

(s− u)2 + (t− v)2)

l2
. (3)

At this point, we make the assumption that l is sufficiently large compared to the

other dimension that cos(θ) ≈ 1.

10



Since the angle spanned by A2 is small, the solid angle Ω can be approximated by

Ω ≈ A2cos(θ)/l2 ≈ ∆u∆v/l2 (4)

where the cosine is approximated to equal one as discussed above. Using these defi-

nitions, along with A1 = ∆s∆t, Eq. 1 can be written in an alternate parametrization

as

L(s, t, u, v) =
l2d4Φ(s, t, u, v)

dsdtdudv
. (5)

We are interested in using this parametrization of the light field to describe the

radiance distribution inside of a simple camera. We let the (s, t) plane represent the

focal plane or detector plane of the camera, and the (u, v) plane represent the plane of

the collecting lens. The function L(s, t, u, v) gives the radiance along a ray traveling

from the point (u, v) on the main lens plane to the point (s, t) on the focal plane.

The variables u and v are defined as {(u, v) ∈ <2 : |u| ≤ R ∧ |v| ≤
√
R2 − u2} where

R =D/2 is the radius of the main collecting lens. The variables s and t are likewise

defined as {(s, t) ∈ <2 : |s| ≤ Ws/2 ∧ |t| ≤ Wt/2} where Ws and Wt are the widths

of the rectangular collecting area (which we will later define as the area containing

microlenses in the case of a plenoptic camera) in the s and t dimensions. The zero of

each axis is located at the optical axis of the camera.

We assume an ideal imaging relationship between an object point located outside

of the camera a distance zo from the main lens plane and an image point located

inside of the camera a distance zi from the main lens, where zo and zi are related by

the imaging relation

1

zo
+

1

zi
=

1

f
(6)

where f is the focal length of the lens. The assumption of an ideal imaging rela-

tionship implies that all rays coming from the object point and passing through the
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Figure 2. The Light Field within a Camera. The light field can be used to describe the
radiance distribution within an imaging system. Under the condition of ideal imaging,
all of the light from a given object point will pass through a point (x, y) on a plane
located some distance zi from the main lens.

aperture stop represented by the main collecting lens will also pass exactly through

the image point defined by the distance zi and the coordinate (x, y), which specifies

the transverse location of the image relative to the optical axis. Fig. 2 provides a

visualization of this scenario.

The requirement that all rays pass through a specified image point for a given

object point implies a mapping between the uv plane and the st plane that is unique

for each object point. This mapping specifies the region of the light field containing

the radiance from the point source. Fig. 3 provides the geometry for understanding

this mapping in two dimensions. In passing through the image point, the ray forms

two similar triangles, one on each side of the image plane. Their dimensions are

related by

s− x
za

=
x− u
zi

. (7)

This equation is solved for s in terms of u by

s = x

(
1 +

za
zi

)
− uza

zi
= mu+ x(1−m) (8)
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Figure 3. Ray Mapping in an Imaging System. The condition of ideal imaging, that
all rays from a given object pass through the same point within the camera, imposes
a mapping between the main lens position (u, v) and the focal plane position (s, t) The
ray in the figure forms two similar triangles, one anterior to the image plane and one
posterior. Equating the ratio of each triangle’s dimensions yields an equation that can
be solved to establish the mapping between (s, t) and (u, v) unique to a given image
location.

where m = −za/zi. Substituting za = l − zi and letting α = zi/l, we see that

m = 1− 1/α, in agreement with the format used in [10]. The equation relating t and

v can be derived in the same manner. Eq. 8 is nothing more than the equation of a

line with slope m and an u-intercept related to x. Since m is a function of zi, it is

implicitly a function of object distance. This fact will become of much importance as

we move forward.

Ignoring the effects of reflection and absorption by optical elements, the radiance

within the conic regions of Fig. 2 will be equal to the radiance at the source object.

We can use the mapping defined in Eq. 8 to state this mathematically, as in

L (mu+ x(1−m),mv + y(1−m), u, v) = L0(x, y,m) (9)

where L0(x, y,m) is the radiance at the object point associated with (x, y,m). Iden-

tifying an object point in this manner is appropriate since each of these values can

be determined directly from the location of the object in world space. The equation

is simplified if we identify the object point, not by the location of its image, (x, y),
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but by the center of its circle of confusion at the microlens plane, (s, t). This location

is determined by setting u = 0 in Eq. 8, whereupon we see that s = x(1 −m) and

t = x(1−m). Upon making this substitution, we obtain the simplified form

L (s+mu, t+mv, u, v) = L0(s, t,m). (10)

For a given object point, the values of m, s, and t in this equation will be fixed.

Allowing u and v to vary across their respective domains, the equation assigns the

radiance L0 to the points on a 2D plane within the 4D space of the light field. In the

2D subspace of the light field defined by fixing t and v, this plane will appear as a 1D

line of slope ds/du = m (See Fig. 6). More detailed interpretations of the equation

are explored in future sections.

3.3 Light Field Sampling with a Plenoptic Camera

Fig. 4 provides a comparison of a conventional camera and a plenoptic camera.

A detector element of a conventional camera captures only information about the

irradiance (power per unit area) at the focal plane. The irradiance is determined by

integrating the radiance function, L, over the solid angle defined by the main lens.

Using Eq. 5, this integration can be performed instead over the lens area,

E(s, t) =
1

l2

∫
u

∫
v

L(s, t, u, v)dvdu (11)

where u and v are integrated over their domains, as defined earlier.

The radiant flux (power) captured by a detector will be equal to the integrated

irradiance over the surface of the detector. We represent this integration by convolving
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Figure 4. Comparison between Plenoptic and Conventional Cameras. (a) shows the
overlapping circles of confusion for two out-of-focus point sources in a traditional cam-
era. The insertion of a microlens array before the detector array in (b) allows the light
from ‘out-of-focus’ point sources to be sampled separately. The microlenses are placed
one focal length away from the detector plane. This allows for each microlens to be
envisioned as an angularly sensitive pixel, and makes possible mapping between each
microlens subpixel and a region of the main lens.

15



the irradiance distribution with a detector-shaped kernel, hd(s, t), given by

hd(s, t) = RECT (s/∆s, t/∆t) (12)

where here ∆s and ∆t are detector sizes. Sampling is then achieved via multiplication

with a comb function, having a periodicity matched to the detector pitch, such that

[16]

Φ(s, t) = [E(s, t) ∗ hd(s, t)]
1

∆s∆t
COMB

(
s

∆s
,
t

∆t

)
. (13)

Since the camera detects only irradiance, it will not distinguish between the overlap-

ping circles in Fig. 4a. Where the cones of light from the two point sources overlap,

they both contribute to the irradiance integrated by the detector.

The plenoptic camera introduces a microlens array in front of the detector array of

a conventional camera. In this section, we consider the case where the microlenses are

separated from the detector array by a microlens focal length. Since the microlenses

are small relative to the separation, l, between the microlens plane and the main

lens, the situation of the main lens approximates ‘optical infinity’ [10]. This means

that the detectors behind each microlens image the back of the main lens, with each

detector integrating up the radiance from the region of its instantaneous field of view

(IFOV). This allows for the light from the two point sources in Fig. 4b to be recorded

separately, since each point source inhabits a different region of the light field.

Fig. 5 shows how the detector size ∆q and the microlens size ∆s stop the region

of the light field, L, integrated by each pixel. The image of the detector at the main

lens plane gives the IFOV, ∆u = ∆q lm/ld. In order to obtain a radiant flux quantity

associated with each detector, Eq. 5 must be integrated over the regions defined by

the microlens in front of the detector as well as the detector IFOV at the main lens
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Figure 5. Plenoptic Camera Radiometry. Each microlens performs stopping of the
radiance reaching the detectors beneath it. The radiance is also stopped at the at
detector plane by the extent of the detector itself. Projecting the detector dimensions
forward onto the main lens allows us to picture this stopping as occurring at the main
lens plane according to the dector IFOV, ∆u. More precisely, the dimensions of each
microlens and the detector IFOV provide the limits of integration needed for obtaining
a radiant flux by integrating Eq. 5

plane. Analogously to the conventional camera, we represent this integration as a

convolution with a 4D kernel whose dimensions are determined by the size of these

regions, given by

h(s, t, u, v) = RECT (s/∆s, t/∆t, u/∆u, v/∆v). (14)

Once again, sampling is achieved via multiplication with the appropriate comb func-

tion,

S(s, t, u, v) =
1

∆s∆t∆u∆v
COMB

(
s

∆s
,
t

∆t
,
u

∆u
,
v

∆v

)
, (15)

such that

Φ(s, t, u, v) =
1

l2
[L(s, t, u, v) ∗ h(s, t, u, v)]S(s, t, u, v). (16)

Note that, although it is likely that microlenses will be circular in shape and arranged

in a non-rectangular grid, our sampling equations assume rectangular lenses and a

rectangular grid for the sake of simplicity. Even where a close-packed hexagonal grid

of circular microlenses is used to maximize fill-factor, resampling of the light field
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Figure 6. Plenoptic Camera Sampling: How the plenoptic camera samples the sloped
line associated with a point source. The process of convolution followed by sampling
with the comb function in Eq. 16 collects all the energy associated with the portion of
the line within the rectangular region and attributes it to the discrete sample at the
center of the region. Each row of the figure represents a row of pixels within a different
subaperture image. Each column is a row of pixels within a microlens image.

after data collection can be used to give effective sampling characteristics similar to

those indicated here [17].

Fig. 6 illustrates how the plenoptic camera samples the sloped line associated

with a point source, as discussed in the previous section. The process of convolution

followed by sampling with the comb function in Eq. 16 collects all the energy associ-

ated with the portion of the line within the rectangular region and attributes it to the

discrete sample. The slope, m̄, in s samples per u sample is related to the continuous

slope m by the relation

m̄ =
ds/∆s

du/∆u
= m

∆u

∆s
= mγ (17)

where γ = ∆u/∆s. Note that there is a critical point at |m̄| > 1, where the point

source illuminates multiple microlenses per subaperture (multiple pixels per subaper-

ture image, represented by a row within the figure).
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Discretized Light Field Representation.

We find that when working with actual sampled light fields, it is very convenient

to work with a normalized form of the light field dimensions. To this end, we define

the function

K(s̄, t̄, ū, v̄) = Φ(s̄∆s, t̄∆t, ū∆u, v̄∆v) (18)

where the variable ranges are defined in Table 1. Ns and Nt give the number of

microlenses in each respective dimension. Nu and Nv give the number of aperture

regions in each dimension, where this number is related to the number of pixels

beneath each microlens by Nu = ∆s/∆q.

Table 1. LF Dimension Intervals

Variable is a member of the set Variable is a member of the set

s [−Ws/2,Ws/2] s̄ [−(Ns − 1)/2, (Ns − 1)/2]
t [−Wt/2,Wt/2] t̄ [−(Nt − 1)/2, (Nt − 1)/2]

u,v {(u, v) ∈ <2 : |u| ≤ R ∧ |v| ≤
√
R2 − u2} ū [−(Nu − 1)/2, (Nu − 1)/2]

v̄ [−(Nv − 1)/2, (Nv − 1)/2]

We allow the normalized variables to take on real values. However, where non-

integer values are used, it is implied that some form of interpolation must be employed

in order to provide the function value. In most cases within this document, interpo-

lation will be discussed explicitly. When a normalized variable is used as the index

of a summation, the variable is assumed to span the set of integers contained in the

interval defined by Table 1.

Eq. 8, which specifies the region of the radiance distribution populated with the

radiance from a single point source, must be modified for use with these normalized

coordinates. The modified equation is given by

K (s̄+ m̄ū, t̄+ m̄v̄, ū, v̄) = K0(s̄, t̄, m̄). (19)
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3.4 Light Field Subspaces and Image Formation

It is useful to gain a sense of the information contained in a number of 2D sub-

spaces of the light field formed by fixing two of its parameters. In its two-plane

parametrization the light field contains a certain degree of symmetry, as it can be

used to describe the radiance at either of the two planes used in the parametrization.

Nonetheless, the structure of the information contained in the light field is very much

asymmetric when the light field is used to describe the radiance distribution within

an imaging system.

The coordinates u and v of the sampled light field specify the location of the

subaperture of size ∆u∆v which crops the radiance integrated to give the radiant

flux Φ(s, t, u, v) collected by a detector. Likewise, the coordinates s and t specify the

location of a microlens of size ∆s∆t which crops the radiance at the microlens plane.

Comparing Eq. 16 and 13 shows that this results in spatial sampling in the microlens

plane that depends on microlens pitch in the same way that focal plane sampling

depends on pixel pitch in a conventional camera.

From these considerations, we expect that by fixing u and v to some value, we

will obtain an image very comparable to that taken with a conventional camera of

pixel size ∆s∆t, but with a lens that is masked to only allow light through the region

indicated by the coordinate (u, v). This 2D light field slice is what is known for this

reason as a ‘subaperture image’ [4]. As illustrated in Fig. 7, the subaperture image

will have reduced blur for defocused objects due to the higher f-number associated

with the smaller aperture size. The figure also illustrates how the mapping identified

in Eq. 19 results in a u-dependent shift in the image location.

Fig. 8 shows the 3D subspace of the light field obtained by fixing v. The rep-

resentation of the subspace is built by vertically stacking all the subaperture images

having the same value of v. As expected, the top surface of the structure has the
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Figure 7. Subaperture Image Formation. The top row of the Figure illustrates the
image collected by a conventional camera for two defocused point sources. A subaper-
ture image (bottom row) is obtained from the light field (middle row) by fixing u and v
(i.e. by taking all of the pixels ‘looking’ at a particular subaperture). The subaperture
image is sharper than the conventional image due to its higher f-number. Also, the
location of the point sources within the image is shifted due to the mapping of Eq. 19.
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Figure 8. Light Field Slices. (a) shows a 3D subspace of the light field obtained by
fixing v. The representation shown here is formed by stacking a row of subaperture
images into a 3D cube. The slice of this cube obtained by fixing the spatial coordinate,
t, is known as an epipolar plane image (EPI), and is shown in (b). In the 4D light
field, a point source in object space is represented by a 2D plane. In an EPI, this plane
appears as a line with slope m̄.

characteristics of an image taken by a conventional camera. The front face of the

structure is the 2D plane formed by fixing t and v. This subspace is known as an

Epipolar plane image or EPI [6]. The sloped lines visible in this image result from

difference in the apparent location of objects when viewed through different apertures

of the camera under the parallax effect. The slope of each line, given by Eq. 17, is

related to the distance from the camera to the point responsible for the line.
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Image Formation.

By integrating Eq. 16 over u and v, we are able to recover the image produced

by the conventional camera in Eq. 13. This is not surprising, as the summation of

subaperture images is nothing more than the recombination of the information shown

to be separately captured in Fig. 4. The image is given by

img(s̄, t̄) =
∑
ū

∑
v̄

K(s̄, t̄, ū, v̄) (20)

where the summations are over all integer values within the intervals defined for ū

and v̄.

The summation over ū and v̄ will result in the 2D lines in Fig. 6 and Fig. 8b being

projected down into one dimension. It is evident that, if the line is initially vertical,

its projection will fill only one pixel in the the final image, img(s̄, t̄). Conversely, if the

line is sloped such that it spans multiple s samples, it will impact multiple pixels of

the projection img(s̄, t̄). This spreading out of sloped lines is nothing more than the

circle of confusion associated with out-of-focus points in a conventional photograph.

When an image is formed via projection, vertical lines (m̄ = 0) appear as in-focus

points, while increasing slope leads to an increasing degree of defocus in the generated

image. This suggests that some degree of refocusing may be performed by ‘shearing’

the light field by some amount, ∆m, prior to projecting, such that points originally

having slope −∆m will appear to be in focus.

Though we arrive at this result from an intuitive consideration of the light field

structure, it is possible to achieve the same result more formally by looking at the

re-parametrization of the light field necessary to simulate a conventional camera with

varying focal length, as in [10].
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In order to represent the shearing operator, we find it convenient to define the

vectors x̄ = [s̄, t̄, ū, v̄]T , s̄ = [s̄, t̄]T , and ū = [ū, v̄]T . We then allow each of our

functions to accept these vectors as arguments, as in f(x̄) = f(s̄, t̄, ū, v̄). Under this

convention, the shearing operator can be defined by a matrix multiplication of the

argument vector, as in

B[f(x̄)](x̄) = f(B−1x̄), (21)

where the matrix needed to shear the light field by the slope m̄ is given by [11]

Bm̄ =



1 0 −m̄ 0

0 1 0 −m̄

0 0 1 0

0 0 0 1


B−1
m̄ =



1 0 m̄ 0

0 1 0 m̄

0 0 1 0

0 0 0 1


. (22)

To confirm that this operator has the desired effect, we write Eq. 19 in terms of the

new vector coordinates introduced here.

K([s̄+ m̄ū, t̄+ m̄v̄, ū, v̄]T ) = K0(s̄, t̄, m̄). (23)

We wish to shear the light field such that the object identified by (s̄, t̄, m̄) is repre-

sented within the light field by a vertical line. To do this we apply the operator B−m̄.

Under the effects of this transformation, the value K0(s̄, t̄, m̄) is remapped to a new

region of the light field:

K0(s̄, t̄, m̄) = B−m̄[K(x̄)](x̄) = K(B−1
−m̄x̄). (24)
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The matrix product B−1
−m̄x̄ evaluates as



1 0 −m̄ 0

0 1 0 −m̄

0 0 1 0

0 0 0 1





s̄+ m̄ū

t̄+ m̄ū

ū

v̄


=



s̄

t̄

ū

v̄


(25)

such that the final result of the shearing operation is the updated mapping,

K([s̄, t̄, ū, v̄]T ) = K0(s̄, t̄, m̄). (26)

This equation confirms that, under the impact of the shearing operator, B−m̄, a point

source which originally mapped to a region of the light field with slope m̄, now maps

to a region having zero slope.

The use of operators in this section was based on a similar use of operators in

[11]. As we will rely on operator notation in the next section, it will continue to be

useful to adopt conventions and operator definitions similar to those employed in that

paper.

The projection used earlier to form a conventional image from the light field is

given its own operator, defined as

P [f(x̄)](s̄) =
∑
ū

∑
v̄

f(s̄, t̄, ū, v̄). (27)

The composition of the shearing and projecting operators can be defined as an imaging

operator, since it results in the generation of a refocused image,

Im̄[f(x̄)](s̄) = (P ◦ Bm̄)[f(x̄)](s̄) (28)
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where ◦ indicates functional composition.

Sampling Effects.

Now that we have identified a procedure for generating refocused images from

the light field, it is appropriate to examine the features of images rendered by this

procedure. The representation of the plenoptic camera light field sampling in Fig. 6

illustrates that, where |m̄| < 1, the radiance from a single point source is localized

to one pixel per subaperture image. However, where this condition is not met, the

number of pixels per subaperture image increases to the order of n = round(m̄2)

(Fig. 6 shows a number of pixels per row of n = round(m̄), but each row is only

one dimension of a subaperture image). This is an important observation because it

indicates that there is a limit to the plenoptic camera’s ability to produce refocused

imagery. Even in the absence of an optical point spread function due to aberrations

or diffraction, it is not always possible to generate from the light field imagery in

which the circle of confusion due to defocus is contained within a single image pixel.

Fig. 9 supports this result by means of a plenoptic camera simulated via geometric

raytracing. The first row of the figure shows the distribution of irradiance at the

detector plane of the camera at intervals as a single point source is repositioned

successively further from the camera. The second row shows lines of diminishing

slope as the object becomes more distant, as would be seen in an EPI slice of the

light field. The slopes, m̄, in this case are much smaller than unity, so only one pixel

is illuminated per row for each line. The third row shows the effect of increasing the

detector size of the camera, ∆q. Since ∆u = ∆qlm/ld, this leads to an increase in

∆u which in turn leads to an increase in γ = ∆u/∆s = m̄/m as well as m̄. This

brings some of the slopes on the left side of the image near to the threshold value of

unity, and these lines begin to shown a certain amount of spreading. The spreading in
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(a)

(b)

(c)

Figure 9. Point Source Moving Away from Camera. (a) shows simulated raw detector
data as a point source moves away from the camera at intervals. (b) shows 2D slices
of the light fields obtained from the sensor data in (a), but at smaller intervals. (c)
illustrates the spread of the sampled light field as subpixel size increases.
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the figure is actually somewhat greater than would be expected for an ideal imaging

system, and this is because of spherical aberration induced by the main camera optic.

3.5 Diffraction Effects

Analysis of light field sampling by a plenoptic camera up to this point has as-

sumed a geometric optics framework free of aberrations or effects of diffraction. This

approach is helpful for setting the stage for the plenoptic camera, but the effects of

these factors can play a role in the camera’s design and performance. This section

will provide a framework for considering the effects of diffraction.

Diffraction is a phenomenon with origins outside of the ray model of light. The

discussion here follows a far more detailed treatment of the subject in [18]. Early

speculation concerning the nature of light propagation proposed that each point on

an expanding wavefront would expand into a secondary spherical wavefront, such

that the envelope of these secondary wavefronts constituted the new wavefront. This

concept is known as the Huygens principle. By allowing these secondary wavefronts to

interfere with each other, Fresnel was able to account for many observed diffraction

effects. It was not until later on that this approach was to some degree grounded

mathematically in Maxwell’s equations, first by Gustav Kirchoff. Modifications of

his original assumptions led to the Rayleigh-Sommerfield formula, as commonly used

today [18],

U(s, t) =
1

iλ

∫∫
U(u, v)

exp(i2π
λ
r01)

r01

cos θdudv. (29)

where r01 is defined in Fig. 10. This equation gives mathematical expression to the

notion of secondary spherical wavefronts expanding from an initial wavefront. The

scalar field U (a non-physical quantity introduced in place of the vector field to make
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Figure 10. Geometry for Diffraction Analysis: Geometry to be used in discussing
diffraction from an aperture or lens. P2 is a point on the object, P1 is a point on the
aperture, and P0 is point on the observation plane. In an imaging system, a lens is
placed at the aperture plane.

the problem tractable) at the plane (s, t) is given by the superposition of spherical

waves originating from each point on (u, v).

In the case of light passing through an aperture, various approximations to this

equation can be made depending on the scale of the aperture compared to the distance

to the second plane. These approximations primarily involve the number of terms

retained in the Taylor series expansion of r01. For example, in the Fraunhofer region,

such eliminations lead to the form [18]

U(s, t) =
A

iλz

∫∫
U(u, v) exp

[
−i2π
λz

(su+ tv)

]
dudv, (30)

where A is a phase factor dependent on z. It is worth noting that the field at (s, t)

is simply the scaled Fourier transform of the field at (u, v). The distances needed for

this approximation are very large at optical wavelengths.

The Fraunhofer approximation is noted here because a similar result is obtained

for the impulse response of a simple imaging system, i.e. the field found at the image
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plane for a point source at the object plane. Such a system is modeled by starting

with a spherical wave to represent the point source. The effect of a thin lens can

be represented as a phase transformation which converts this diverging wavefront

into a spherical wave centered on the image point. Eq. 29 is then used to model

the propagation of this field at the lens aperture to the image plane. Upon making

certain substitutions described in [18], it is seen that the impulse response is of the

form [18]

h(s, t) =
A

λzi

∫∫
P (u, v) exp

[
−i 2π

λzi
(su+ tv)

]
dudv (31)

This impulse response can be used as a Point Spread Function (PSF) to relate the

diffraction-limited image to the ideal image predicted by geometric optics only for

coherent, monochromatic illumination. Only under this condition do field strengths

add linearly in order to make this approach valid. For this case, the diffraction-limited

and geometric images are related by [18]

Ui(s, t) =

∫∫
h(s− ξ, t− η)Ug(ξ, η)dξdη = h(s, t) ∗ Ug(s, t). (32)

For an incoherent imaging system, the property of linearity is observed by intensity

rather than field strength. Therefore, it is necessary to employ a PSF which operates

on intensity images, which is the square of the field impulse response [18]

Ii(s, t) =

∫∫
|h(s− ξ, t− η)|2Ig(ξ, η)dξdη = |h(s, t)|2 ∗ Ig(s, t). (33)

For the case of a circular aperture, the PSF is given by the airy disc pattern [19]

|h(s, t)|2 = 4J2
1

(
π
√
s2 + t2

λf/#

)/(
π
√
s2 + t2

λf/#

)2

(34)
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where J1 is the first order Bessel function. Associated with the point spread function

is its Fourier transform, known as the Optical Transfer Function (OTF). By the

convolution theorem, the OTF operates by multiplying the spectrum of the ideal

geometric image to give the spectrum of the diffraction limited image. For a circular

aperture, the OTF is given by [19]

OTF 1D(k, k0) =


2
π

[
cos−1

(
k
k0

)
− k

k0

√
1−

(
k
k0

)2
]

: k ≤ k0

0 : k > k0

(35)

where k0 = 1/(λf/#) is the cutoff frequency. Because the OTF for a circular aperture

falls to zero for frequencies beyond this cutoff, these frequencies will not appear within

the final image.

Within a conventional digital camera, high spatial frequencies are also filtered as a

result of sampling of the image by discrete detector elements in the focal plane array.

According to the Nyquist sampling theory, the samples of a signal spaced at p are

sufficient for exactly reproducing a signal composed of frequencies lower than 1/2p

[18]. If the original signal has frequencies higher than this cutoff, those frequencies

will be ‘folded’ into lower ones as aliasing.

It is common to match the OTF cutoff frequency to the sampling cutoff frequency

in order to avoid aliasing as well as oversampling [20]. Oversampling increases noise

without, in most cases, providing an improvement in resolution. For a conventional

camera, the matching condition is given by

kNY Q =
1

2∆q
= k0 =

1

λf/#
. (36)

For a central wavelength, this equation defines a relationship between the lens diam-

eter, focal length, and pixel pitch. Given the additional layer of microlenses within a
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plenoptic camera, it is not surprising that the role of diffraction in general, and the

interplay between sampling and MTF cutoffs in particular, is more complicated than

for a conventional camera. Within the context of the plenoptic camera, we would like

to match the MTF cutoff of the main lens to the cutoff of the microlens sampling,

and the MTF cutoff of each microlens to the sampling cutoff of the underlying pixels.

As a first order approach to this problem, we assume that the two diffraction

effects are decoupled, i.e., that spreading at the microlens plane does not impact

spreading at the detector plane. Under this approximation, the effects of diffraction

can are modeled via a 4D point spread function, given by the convolution of the 2D

PSF associated with the main lens with the 2D PSF associated with the microlenses.

Since the two PSFs are functions of independent variables, this results in

|h(s, t, u, v)|2 = 16


J2

1

(
πD
√
s2 + t2

lmλ

)
(
πD
√
s2 + t2

lmλ

)2




J2

1

(
π∆s
√
u2 + v2

ldλ

)
(
π∆s
√
u2 + v2

ldλ

)2

 . (37)

The 4D optical transfer function is likewise given by

OTF 4D(ks, kt, ku, kv) = OTF 1D(
√
k2
s + k2

u, k
0
st)OTF

1D(
√
k2
s + k2

u, k
0
uv) (38)

where 1D OTF is as defined in Eq. 35, and the cutoff frequencies are defined as

k0
st = D/lmλ and k0

uv = ∆s/ldλ, according to the general definition k0 = 1/(λf/#).

Ideally, these cutoff frequencies should be matched to the Nyquist cutoff frequencies

associated sampling rates implied in Eq. 15, as in the following:

k0
st = kNY Qst , k0

uv = kNY Quv . (39)
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To allow for the possibility that these two constraints may not be simultaneously

achievable, we introduce coefficients c1 and c2,

k0
st = c1k

NY Q
st , k0

uv = c2k
NY Q
uv , (40)

were c1 > 1 implies undersampling at the microlens plane, which may lead to aliasing,

and c1 < 1 implies oversampling. The same holds true for c2 with regard to the

detector plane. Evaluating for the various cutoff frequencies, we get

D

lmλ
=

c1

2∆s
,

∆s

ldλ
=

c2

2∆q
(41)

Dividing the two equations gives, after canceling like terms and rearranging,

c1

c2

=
D

∆q

ld
lm

=
D

∆u
= Nu (42)

which follows because ∆u = ∆qlm/ld and D = Nu∆u. This result is very interesting

because it means that, for a plenoptic camera, since Nu > 1, it is impossible for both

c1 and c2 to equal unity, and thus it is impossible to simultaneously match the OTF

cutoff of the main lens to the cutoff of the microlens sampling, and the OTF cutoff of

each microlens to the sampling cutoff of the underlying pixels. Rather, it is necessary

that there be some amount of undersampling at the microlens plane, oversampling at

the detector plane, or both.

Fig. 11 graphically illustrates the problem for a plenoptic camera having Nu = 3

subapertures. At c1 = 1, the main lens OTF cutoff is perfectly matched to the

sampling cutoff (Nyquist) of the microlenses. However, the microlens OTF cutoff

is short of the Nyquist rate for the detector array, indicating oversampling at the
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Figure 11. Plenoptic Camera OTF: Relative Scale. The figure depicts how the main
lens OTF and microlens OTF changes with respect to the Nyquist frequency as the
parameter c1 is altered for the a camera having Nu = 3 subapertures.
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detector plane. At c1 = 3, the microlens OTF is matched to the detector sampling

cutoff. However, for this case, there is undersampling at the microlens plane.

Fig. 11 is not helpful for assessing what is the optimal value of c1 and c2 since

it masks the fact that, in absolute terms, changing these parameters will impact the

value of the Nyquist frequency for either the main lens or microlens, depending on

how the change is effected. In order to examine actual performance, it is necessary

to introduce the concepts of ground sampled distance (GSD) and ground spot size

(GSS) [20]. These concepts reflect the fact that it is not spatial frequencies resolvable

at the image that are important, per se, but rather the spatial frequencies at the

object. In other words, these concepts account for the magnification of the imaging

system.

In general, the GSD is defined as

GSD = p
h

f
(43)

where p is the size of the pixel or whatever is performing the sampling, h is the

distance to the object, and f is the focal length. Corresponding to the GSD is a

ground sampled Nyquist frequency, kGN , defined as

kGN =
1

2GSD
=

f

2hp
=
f

h
kN . (44)

This relationship also applies for the ground sampled OTF cutoff frequency,

kG0 =
f

h
f0 =

f

h

1

λf/#
=

D

λh
. (45)
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For the plenoptic camera, cutoff frequencies at the target relate to cutoffs at the

microlens plane resulting from microlens sampling and the main lens OTF. Matching

cutoff frequencies gives

kG0 = c1k
G
N , or

D

λh
= c1

lm
2h∆s

. (46)

In the same way, cutoff frequencies at the detector plane brought about by detector

sampling and the microlens OTF are related to spatial frequencies at the main lens

plane. The L superscript is introduced in order to refer to this case:

kL0 = c2k
L
N , or

∆s

λlm
=

c2

2∆u
(47)

.

We now wish to consider the case of a camera with fixed lens diameter. For this

case, as illustrated in the equations that follow, the optical cutoff at the ground plane

and the sampling cutoff at the main lens plane are fixed. Changing c1 effects a change

in the sampling cutoff at the ground plane and the optical cutoff at the main lens

plane, and is achieved by altering the ratio of lm to ∆s.

kG0 =
D

λh
(48)

kLN =
Nu

2D
(49)

kGN =
lm

2h∆s
=

1

c1

D

λh
(50)

kL0 =
∆s

λlm
=

c1

2D
(51)

Fig. 12 shows how the various cutoffs vary in terms of the ground sampled fre-

quency for a plenoptic camera with fixed lens diameter and Nu = 3. The figure
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Figure 12. Plenoptic Camera OTF: Absolute Scale. The figure depicts how the Nyquist
frequency and OTF change with the parameter c1 for a camera with Nu = 3 subapertures
and a fixed lens diameter D.
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confirms that it is impossible to improve frequency in one domain without reducing

it in the other.

Finally, Fig. 13 extends the picture for varying subaperture numbers (Nu). The

figure illustrates that it is possible to achieve high angular sampling by increasing

the number of subapertures and setting c1 equal to the number of subapertures.

However, as c1 increases, the Nyquist frequency of the microlens sampling drops far

below that of the main lens OTF cutoff. Because of these opposing behaviors, there

is no preferred value of c1 that gives overall best performance.

In future sections, it will be convenient to ignore the effects of diffraction, and

to assume that sampling by the detector elements and microlenses constitutes the

limiting factor impacting the precision of the camera’s ranging performance. The

preceding figures illustrate that as long as c1 ≥ Nu or equivalently c2 ≥ 1 this approach

is warranted, since where this is true, all Nyquist frequencies fall below OTF cutoff

frequencies. Requiring that c2 ≥ 1 imposes a constraint on the relationship between

the plenoptic camera f/# and the detector size. Namely, for the condition to be met,

it must be true that

∆q ≥ (f/#)
λ

2
=
lm
D

λ

2
. (52)

Fig. 14 provides a nomograph relating main lens diameter, focal length (lm), and

wavelength (λ) to the minimum pixel size satisfying Eq. 52. For optical wavelengths

at f/#’s of interest, the mininum pixels sizes are small enough so as not be be a

concern. This analysis does not deal with optical aberrations, whose impact is likely

more critical in an optical system. However, it is worth noting that optical aberrations

do not effect the location of the cutoff frequency of the OTF [18].
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Figure 13. Plenoptic Camera OTF and Sampling Cutoff Frequencies. An illustration of
how the optical and sampling cutoffs depend on c1 for different numbers of subapertures
Nu. If c1 ≥ NU , oversampling will be avoided and the effects of diffraction can be safely
ignored.
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Figure 14. Plenoptic Camera Minimum Detector Size. Detectors smaller than the scale
indicated by this nomograph will result in oversampling of the optical point spread
function.
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3.6 The Fourier Transformed Light Field

As noted previously, focused images of the type generated by a conventional cam-

era can be obtained by projecting the light field down to two spatial dimensions by

integrating over the angular dimensions, u and v (See Eq. 20). This projection may

be preceded by a shearing step to control the depth at which objects appear in focus.

This relationship bears a strong similarity to certain forms of medical imaging, in

which x-ray attenuation provides a projection of the density distribution of a bone

or tissue. Computed tomography is the process of using projections along different

directions to reconstruct the original 3D density distribution. A common approach to

this problem involves utilizing useful relationships between the density distribution

and its rotated projections within various transformed domains.

The projection slice theorem defines this relationship for the Fourier domain. In

its most basic 2D form, the theorem states that the sequence of projecting a 2D

function along a line and then taking the 1D Fourier transform along that line is

equivalent to the sequence of taking the 2D Fourier transform of the function and

then extracting the 1D slice along the same line (see Fig. 15). An intuitive basis for

the theorem is explained by Malzbender in [21]:

Any point in the frequency domain corresponds to a sinusoid with some
amplitude, phase,and orientation. If the sinusoid is not aligned with the
projection direction, its projection will sum to zero. However, those com-
ponents aligned with the projection direction sum to some finite value.
This set of components with nonzero projections can be found in the fre-
quency domain along a line perpendicular to the projection direction.

Ng et al. in [11] were the first to demonstrate the projection slice theorem’s extension

for use with the higher dimensionality of the light field. They discuss refocusing

in the Fourier domain with continuous variables. While their discussion is useful

for proving the validity of the concept, it does not address some of the details of a
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Figure 15. The Projection Slice Theorem. The projection slice theorem states that the
projection operation in the spatial domain has a Fourier domain equivalent of taking
the central slice perpendicular to the direction of projection. The spectrum in the lower
right (d) can be obtained either by taking the 1D Fourier transform of the projection
(b), or by extracting the slice along the dotted line in the spectrum (c).

practical implementation, which calls for the use of summations and discrete Fourier

transforms. Here, we walk through the essentials of the math for the the discrete

case, and show where it is important to modify the results provided in [11].

In order to proceed, we must augment the list of operators defined in the previous

section. To begin, we define the spatial frequency variables, ks, kt, ku, and kv, and

their normalized equivalents, k̄s, k̄t, k̄u, and k̄v, where k = k̄∆k = k̄/(N−1). Nyquist

for the two cases is defined as kN = ±1/2 and k̄N = ±(N−1)/2, respectively. We also

allow for vector indexing using the definitions k̄ = [k̄s, k̄t, k̄u, k̄v]
T and k̄s = [k̄s, k̄t]

T .

The 4D Discrete Fourier Transform is defined as

FT 4[f(x̄)](k̄) =
∑
s̄,t̄,ū,v̄

f(s̄, t̄, ū, v̄) exp

[
−2πi

(
k̄s

s̄

Ns

+ k̄t
t̄

Nt

+ k̄u
ū

Nu

+ k̄v
v̄

Nv

)]
.

(53)
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We use the letter G to refer to the Fourier transformed light field, as in

G(k̄) = FT 4[K(x̄)](k̄). (54)

We also define a slice operator in the Fourier domain which returns the subspace

obtained by setting k̄u = 0 and k̄v = 0, as in

S[f(k̄)](k̄s) = f(k̄s, k̄t, 0, 0). (55)

Appendix A shows that the sequence of shearing, projecting, and Fourier trans-

forming is equivalent to the sequence of Fourier transforming, shearing, and slicing,

i.e.

(FT 2 ◦ P ◦ Bm̄)[f(x̄)] = (S ◦ B̄−Tm̄ ◦ FT 4)[f(x̄)] (56)

where

B̄m̄ =



1 0 −m̄(Nu/Ns) 0

0 1 0 −m̄(Nv/Nt)

0 0 1 0

0 0 0 1


. (57)

From this, it follows by direct evaluation that

FT 2[img(s̄)](k̄s) = G

(
k̄s, k̄t,−m̄

Nu

Ns

k̄s,−m̄
Nv

Nt

k̄t

)
. (58)

This means that, in the frequency domain, a refocused image is formed simply by

taking a 2D slice from the transformed light field, in contrast to the projection op-

eration required in the spatial domain. The ideal image formation criterion derived

in the previous section can be easily shown within the frequency domain. Outside a

range of alpha values, ks is cropped leading to lost high spatial frequency information.
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Figure 16. Fourier Slice Imaging. In the Fourier domain, an image is contained within
a central slice of the light field. The figure illustrates the steepest slope at which slicing
can occur before cropping of high spatial frequencies takes place.

In order to avoid cropping, ku must remain less than the Nyquist limit of Nu/2 when

ks = Ns/2, as indicated in Fig. 16. By Eq. 58, this leads directly to the requirement

that m̄ ≤ 1, as discussed previously. The same result is derived with reference to the

continuous light field in [11] under the assumption of band limited performance.

Interpolation is required in order to extract an arbitrary angled slice from the

evenly sampled 4D light field space. This interpolation is best thought of as a recon-

struction of the original continuous light field function from the sampled points, which

can be represented as weighted delta functions within the continuous space. Recon-

struction is achieved by convolving the gridded delta functions with some manner of

interpolation filter.

Any finite impulse response (FIR) filter will have a Fourier domain transfer func-

tion of infinite extent. Fig. 17 shows the Fourier transform of some common inter-

polation kernels. When these kernels are used as interpolation filters in the Fourier

domain, the tiled spatial image is multiplied by this Fourier transform. Regions where

the transfer function is non-zero outside of the central tile of the spatial domain tend

to show up as a faint shadowing or aliasing effect in the final image [22].

In principle, this problem is resolved by using the ideal SINC interpolation filter

whose Fourier transform is a RECT function. The use of such a filter would eliminate
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Figure 17. Interpolation Filter Performance. Interpolation can be envisioned as using
a reconstruction filter to recreate the original continuous function from the sampled
function, and then resampling at the new rate. Convolution in one domain is equiva-
lent to multiplying by the Fourier transform of the convolution filter in the alternate
domain. When the Fourier transform is nonzero outside of the central tile (indicated
by the leftmost hashed line in plots b, d, and f), information from those regions appear
as ghosting or aliasing within the final alternate domain image. Kaiser-Bessel interpo-
lation is good for reducing aliasing because the central lobe of its Fourier transform
can be adjusted to falloff close to the boundary of the central tile.
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(a) (b)

Figure 18. Refocused Image Comparison. The image formed using cubic interpolation
in (a) shows noticeable aliasing near the dots and edges of the die. These artifacts are
reduced considerably by using Kaiser-Bessel interpolation (b).

aliasing by cropping out only the central tile of the spatial domain. To imitate SINC

interpolation with a FIR filter, [22] describes a process of iteratively truncating within

both domains until the resulting filter is sufficiently localized in each. The result of

this process is known as the prolate spheroidal wave function (PSWF), and can be

approximated by the Kaiser-Bessel function, which has the form

h(x) =
I0(β

√
(1− (2x/w)2))

wI0(β)
, (59)

where β is an attenuation factor, w is the window width, and I0 is the modified zero

order Bessel function of the first kind [22]. Trial and error showed that a window of

w = 3 and β = 5 gave good results for this application.

Fig. 18 compares the results of Fourier domain refocusing using Kaiser-Bessel

reconstruction compared to cubic interpolation. Since the Fourier transform of the

Kaiser-Bessel function drops off within the central image tile of the spatial domain,

the refocused image will show a drop-off in intensity away from the center. Though

[21] implies that this must be corrected by premultiplication of the Light Field by
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the inverse of the filter Fourier transform, it was found that multiplication following

image formation provided equal results and greater flexibility.

A worthwhile note with respect to implementation is that, in applications where

the zero element of the image is located at the upper-left corner rather than the

image center, it is often necessary to rearrange quadrants of the spatial domain prior

to Fourier transforming [21].

3.7 Focused Plenoptic Camera Sampling

The previous sections deal with a camera in which the detector array is separated

from the microlens array by one microlens focal length, so that the microlenses are

focused at infinity. Since the main lens/microlens separation is large compared to

the scale of the microlenses, this distance approximates optical infinity, and the mi-

crolenses can be thought of as being focused on the main lens. Thus, this arrangement

results in a direct mapping between position on the detector array and position on

the main lens plane.

If the detector array is placed at some distance from the microlens other than the

microlens focal length, then the microlenses will image a plane other than that of the

main lens. The arrangement has been referred to as the ‘focused’ plenoptic camera

configuration [23].

Fig. 19 gives a diagram of a focused plenoptic camera, in which the image of the

object (the arrow) exists at the same location as the conjugate plane of the detector

array. In this case, each microlens reimages a region of the primary image. The

spacing of the pixels beneath the microlens will determine how densely the primary

image is spatially sampled within each microlens image. For the case of Fig. 19, we

can imagine that the pixels are spaced so as to sample the primary image at the two

locations shown.
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Figure 19. Focused Plenoptic Camera. In a focused plenoptic camera, the microlenses
do not focus to the back of the main lens, but to a plane within the camera. If the
main lens produces an image at this point, it will reimage to the detector plane.

Figure 20. Conventional Plenoptic Camera Comparison. The sampling characteristics
of a focused plenoptic camera can be closely mimicked by a conventional plenoptic
camera with appropriately sized and positioned microlenses and detector elements.

Fig. 20 shows the setup of a conventional plenoptic camera, where the microlens

plane has been placed at the plane that was conjugate to the detector plane of the

focused plenoptic camera. Here, the size of the microlenses determines spatial sam-

pling of the image and the subpixel spacing determines angular sampling. By choosing

the correct microlens and pixel sizes, the figure suggests that a conventional plenop-

tic camera can achieve the sampling characteristics of a focused plenoptic camera,

though the subsequence image formation process from the raw sensor data will be

quite different.

In order to formalize this suggestion of equivalence, we examine the sampling pat-

terns for the two types of cameras. First, we need to determine how the conventional

plenoptic camera samples the light field at the main lens (u) plane and microlens (s)

plane. For equivalence, this sampling must be matched (in terms of sampling density)

by the sampling of the light field by the focused plenoptic camera at the main lens

(u) plane and the plane conjugate to the detector plane (the s′ plane in Fig. 21).

48



us'

s

a b

lm

q

Figure 21. Focused Plenoptic Camera Geometry. Geometry of a focused plenoptic
camera. The s′ plane is the conjugate plane of the detector array.

Fig. 22 shows the sampling pattern for a conventional plenoptic camera. The light

received by a pixel is constrained first by the stopping performed by the microlens at

the microlens plane, and next by the spatial extent of the detector itself—or equiva-

lently, by the projection of the detector at the main lens plane. The figure illustrates

how sampling is performed at the microlens plane and at the main lens plane.

Fig. 21 provides the geometry necessary for determining the focused plenoptic

camera sampling. Here, a is the distance from the microlens array to the detector

array, and a and b are related by the lens equation. The conjugate plane of the

detector plane is designated the s′ plane. The figure illustrates a number of similar

triangles formed by a ray of light passing through the camera. The dimensions of the

triangles are related by

s− s′

b
=
s′ − u
lm − b

=
q

a
=
s− u
lm

. (60)

For a single microlens (s fixed), we see that sampling in u (angular sampling) is

dependent on pixel size, i.e. ∆us = lm/a∆q, where we use the s subscript to indicate

that the s (the microlens location) does not change. Likewise for sampling in the s′

plane (spatial sampling): ∆s′s = b/a∆q. To see how s′ changes as we translate across
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Figure 22. Conventional Plenoptic Camera Sampling. In a conventional plenoptic
camera, sampling in the microlens plane is determined by the microlens size, ∆s, while
sampling in the main lens plane is determined by the magnified detector size.

microlenses, we solve Eq. 60 for s′ in terms of s and u, to give

s′ = u
a

lm
+ s

(
1− a

lm

)
(61)

from which we see that ∆s′u = ∆s(1−a/lm). Fig. 23 shows the sampling pattern for

the focused plenoptic camera, which illustrates these relationships.

To mimic the performance of a focused plenoptic camera with a traditional plenop-

tic camera with microlenses placed in the s′ plane, it is simply necessary to ensure

that its sampling density is the same as that of the focused plenoptic camera. Table

2 shows the sampling rates for the two variants, and Table 3 shows how parameters

must be set within a conventional plenoptic camera to mimic the performance of a

focused camera with given parameters.

Fig. 24 shows a possible matching of sampling patterns between a focused plenop-

tic camera and a conventional plenoptic camera. Notice how each conventional camera

sample contains exactly one focused camera sample.
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Figure 23. Focused Plenoptic Camera Sampling. If the light field is parameterized
in terms of s′ and u, focused plenoptic camera sampling is dependent on a number of
parameters which can be adjusted to mimic traditional plenoptic camera sampling.

Table 2. Conventional and Focused Plenoptic Camera Sampling Densities

Conventional Plenoptic Camera Focused Plenoptic Camera

Spatial Sampling 1/∆s 1
∆s′s

= b
a

1
∆q

Angular Sampling Nu/D
Nu

D
∆s′s
∆s′u

= Nu

D
∆q
∆s

a
b
/
(

1− a
lm

)

Table 3. Conventional and Focused Plenoptic Camera Equivalents

Conventional Plenoptic Camera Focused Plenoptic Camera

Microlens Size ∆q a
b

∆s

Numer of Subpixels Nu
∆q
∆s

a
b
/
(

1− a
lm

)
Nu

Subpixel Size ∆s
Nu

(
1− a

lm

)
∆q
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Figure 24. Matched Sampling Performance for Focused and Traditional Plenoptic
Cameras: Traditional plenoptic camera and conventional plenoptic camera sampling
patterns, matched via the equivalences in Table 3.

It is worth noting that the sampling of the two cameras is not identical in that the

mapping that relates a sensor array location to a parameterized light field coordinate

is much different for the two cameras. Techniques for generating refocused images

directly from focused plenoptic camera data are discussed in [23] and [24]. Gener-

ation of a light field with a 2-plane parametrization is presented in [25]. Despite

differences in data processing, the ability to create a conventional plenoptic camera

which samples the light field with the same angular and spatial sampling densities

as a focused plenoptic camera means that the focused plenoptic camera need not be

treated as a separate case in the analysis presented in this paper. Rather, the ex-

pected performance for a given focused plenoptic camera may be determined by using

the equations given here to determine the equivalent conventional camera, which can

be used for further analysis.
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IV. Plenoptic Ranging

4.1 Introduction

The fundamental result of the previous chapter is that a point in object space is

represented by a 2D plane within the 4D light field. The orientation of the plane is

directly related to the object’s distance from the camera, as well as other fixed camera

parameters. For the plenoptic camera, range finding is the operation of identifying

these region and determining its orientation.

Eq. 8 shows that for an image located zi = αlm from the main lens, the light field

will have a slope m = ds/du given by

m =
za
zi

=
lm − zi
zi

= 1− lm
f

+
lm
zo

(62)

where zo is the object distance, which is related to zi by the lens equation (Eq. 6). We

use the term ‘sampled light field slope’ to refer to the slope in terms of s samples per

u sample, m̄ = ds̄/dū = mγ, where γ = ∆u/∆s. By these relationships, a difference

in distance δz is related to a difference in slope δm or in sampled slope δm̄ by

δz =
z2
o

lm
δm =

z2
o

lmγ
δm̄. (63)

Uncertainty is related in the same manner,

σz =
z2
o

lm
σm =

z2
o

lmγ
σm̄, (64)

where σm and σm̄ are the uncertainties associated with m and m̄, respectively, and

σz is the uncertainty associated with object distance.
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In dealing with experimental results, uncertainty is determined by finding the

mean square error (MSE) or root mean square error (RMSE) of the estimated quantity

across the sample represented by a particular light field. Mean Squared Error is well

understood to be defined as

MSE(x̂) =
1

N

N∑
i=1

(x̂i − xi)2 (65)

where x̂i is the estimated value and xi is the true value. On the other hand, in

the context of uncertainty modeling, variance is used to quantify uncertainty. The

variance of an estimator is calculated typically in terms of the variance of some random

variable incorporated into a simple light field model. Variance is defined as

var(x̂) =
1

N

N∑
i=1

(x̂i − x̄)2 (66)

where x̄ is the mean value of the sample set. The two metrics are related by [26]

MSE(x̂) = var(x̂) + (Bias(x̂, x))2 (67)

indicating that, for an unbiased estimator, the metrics should be equivalent. For this

reason, the symbol σ is used in each context, whether to refer to RMSE or standard

deviation. Throughout the chapter we will have occasion to employ a few properties

of the variance. The first is a scaling property,

var(ax) = a2var(x), (68)
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which follows directly from the definition of variance. The second is known as the

Bienayme formula [27], which states that

var

(
N∑
i=1

xi

)
=

N∑
i=1

var(xi) (69)

when the values of xi are uncorrelated. We combine these two properties to say that

var(ax+by+c) = a2var(x)+b2var(y) where x and y are uncorrelated random variables

and a, b, and c are constants.

The goal of this chapter is to obtain an expression for the uncertainty in the

sampled light field slope, σm̄, in terms of parameters intrinsic to the sampled light

field, i.e. the number of angular samples, Nu, or the gradient of the sampled light field.

An analysis of σm̄ is particularly useful because the quantity should be independent

of camera parameters such as microlens size, main lens diameter, etc. Thus, the

analysis can be performed on a light field recorded by an arbitrary camera, and then

extrapolated to other constructions via Eq. 64. In this chapter, we examine light fields

from cameras having a variety of sampling characteristics to test whether the sampled

slope uncertainty can truly be decoupled from camera parameters not intrinsic to the

sampled light field.

Synthetic light fields are utilized extensively within this chapter due to the ease

of obtaining ground truth depth and disparity information. Synthetic light fields are

typically generated by some type of 3D rendering software, by translating a camera

through a grid of positions to obtain the plenoptic camera’s ‘subaperture images.’

One disadvantage of this method of simulation is that it does not naturally account

for the spreading effects discussed in section 3.4.

The synthetic light fields utilized in this paper are generated using the 3D model-

ing software, Blender, and made available by the Heidelberg Collaboratory for Image

Processing (HCI) [28]. A sample light field is shown in Fig. 25. Though vary-
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Figure 25. An HCI Lightfield. Depths are assigned physical units corresponding to the
camera parameters given in Table 4.

ing camera sampling characteristics would be performed most naturally and without

constraints by returning to the original Blender scenes, within this work this option

was forgone for the simplicity of simulating tradeoffs by performing resampling of the

full light fields. This method does not allow for the addition of information, so any

tradespaces explored must involve courser sampling than the original rendered light

field.

The HCI light fields have an angular resolution of 9× 9 and spatial resolution of

768× 768. Based on information provided about the setup of the Blender rendering

environment, the light field sampling can be related to that of a plenoptic camera

with the characteristics given in Table 4.

Table 4. HCI Light Field Camera Parameters

D f lm ∆q ∆s ∆u Nu NS Ws

0.56m 0.95m 1m 15.5µm 138.9µm 6.25cm 9 768 10.7cm

Figs. 26 and 27 illustrate three ways in which the light field can be resampled

in order to investigate the role of different parameters. 1) Simply cropping the light
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(a) (b) (c)

Figure 26. Plenoptic Camera Tradeoffs. The HCI lightfield can be resampled to in-
vestigate the role of various camera parameters. In (a), lens diameter and detector
size are varied to increase Nu while keeping ∆u and microlens size constant. In (b)
Nu is increased by changing only detector size. (c) involves the tradeoff in spatial and
angular resolution achieved by varying microlens size.

u

s

~Δq ~D  #Δs #Δu ~Δq #D #Δs #Δq #D ~Δs

Figure 27. Tradeoff Sampling. Resampling required for the simulated cameras in
Fig. 26.
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field in the angular dimensions by successively decreasing amounts is equivalent to

expanding the camera diameter while keeping microlens size constant and decreas-

ing detector size. 2) Holding all parameters constant while changing pixel size can

be simulated by resampling within only the angular dimensions. 3) Changing the

microlens diameter results in a tradeoff between angular and spatial sampling rates.

This tradeoff is simulated by resampling in both the spatial and angular dimensions.

In resampling, it is crucial that proper interpolation be employed to eliminate alias-

ing. Here, low pass Gaussian filtering was employed to remove all frequencies above

Nyquist prior to downsampling via nearest-neighbor interpolation.

Three slope estimation frameworks are examined in the chapter. The first utilizes

a feature matching algorithm to determine correspondences between images, resulting

in a sparse 3D point cloud. The second approach can be thought of as an extension of

traditional image correlation techniques to the expanded light field space. It looks for

minima in the variance calculated along different slopes within the light field. Finally,

a Fourier domain ranging technique is explored, and its performance is evaluated.

4.2 3D Point Clouds using Feature Matching

Image registration provides one avenue of approach to the depth estimation prob-

lem. The major elements of an image registration algorithm are a feature detector

and descriptor. The existence of a feature detection step sets this method apart from

many of the others to be discussed. Having such a step means that the resulting

depth map will be to some degree sparse–i.e., a depth estimate will not be generated

for every pixel in a rendered image of the scene. The advantage closely related to this

is that, once a feature has been detected, it is typically a small matter to estimate

its location with a sub-pixel level of accuracy. For example, given a line of pixels

identified by an edge detector to constitute an edge, the location of the edge in sub-
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pixel space can be estimated with a simple linear fit. An approach similar to this is

described below for the feature detection employed in this section.

Once a collection of features has been identified, a descriptor vector is generated

for each feature using the region surrounding the feature within the image. The

descriptor must capture the salient attributes of the surrounding to give a distinctive

description, capable of distinguishing the feature from all others detected within the

scene. These descriptor vectors are then matched with other descriptor vectors using

Euclidean distance, spectral angle, or some other classifier, to establish a mapping

between the two images. Image registration algorithms are often designed to be

robust to translations, rotations, and scalings of an original image. Thus, it is very

important that the detector be able to identify the same features within an image

under these effects.

This section provides a theoretical framework for predicting the expected un-

certainty within the context of feature matching. Features within separate images

are assumed to be correctly detected and matched, such that any error results from

feature localization error. Feature localization is treated alternately with the assump-

tion of pixel level accuracy and the assumption of error with a normally distributed

probability density function.

Quantization Error.

The case of feature localization to within pixel accuracy can be treated by the

model,

si = mui + e, (70)

where e is uniformly distributed over (−∆s/2,∆s/2).
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Figure 28. Quantization Error Visualization. The figure shows the range of possible
slopes when a line is known with pixel-level precision.

For such a case, m̂ is a maximum likelihood estimator of m if and only if m̂− <

m̂ < m̂+, where

m̂+ = min

(
si + ∆u/2

ui

)
(71)

and

m̂− = max

(
si −∆u/2

ui

)
(72)

give the extrema of slopes falling within the bounds of the error distributions, as

shown in Fig. 28. The estimator m̂′ = (m̂++m̂−)/2 has certain optimality properties,

discussed in [29]. Its uncertainty is given by ∆m = m̂+ − m̂−.

Normally Distributed Error.

The assumption of normally distributed error is useful because it leads to a clean

analytic result. The model underlying this section is given by

si = mui + n, (73)

where n is a zero-mean normally distributed random variable with variance σ2
n, and

ui = i∆u, where i ∈ {1, Nu}. Given this model, simple linear regression provides

the optimal estimator for m, with m̂ = cov(s, u)/var(u), where the variance and
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covariance are well understood to be defined as

cov(s, u) =
1

Nu

Nu∑
i=1

(ui− < ui >)(si− < si >) (74)

and

var(u) =
1

Nu

Nu∑
i=1

(ui− < ui >)2 (75)

where the angular brackets are used to denote the mean of the enclosed variable. The

covariance can be rewritten by substituting in Eq. 73, as in

cov(s, u) =
1

Nu

Nu∑
i=1

(ui− < ui >)(mui + ni −m < ui >). (76)

Upon factoring, this gives

cov(s, u) =
1

Nu

[
m

Nu∑
i=1

(ui− < ui >)2 +
Nu∑
i=1

(ui− < ui >)ni

]
. (77)

Substituting these expressions for covariance and variance into the equation for m̂,

we obtain an updated expression for the slope estimator:

m̂ = cov(s, u)/var(u) = m+

Nu∑
i=1

(ui− < ui >)ni

Nu∑
i=1

(ui− < ui >)2

. (78)

Employing the fact that var(ax+ by+ c) = a2σ2
x+ b2σ2

y if a, b, and c are constants and

x and y are random variables, as discussed in the chapter introduction, the variance

of the estimator directly reduces to

var(m̂) =
σ2
n

Nuvar(u)
. (79)
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Assuming that Nu is odd, the denominator can be written as

Nuvar(u) =
Nu∑
i=1

(
u2
i− < ui >

)2
= 2∆u2

(Nu−1)/2∑
i=1

i2 (80)

where we have used the definition of ui and a reindexing to provide an equivalent

expression. The series
∑n

i=1 i
2 is a square pyramidal number having a known analytic

sum of n(n+1)(2n+1)/6 given by Faulhaber’s formula [30]. This substitution allows

for more convenient expression as

Nuvar(u) = ∆u2Nu(Nu − 1)(Nu + 1)/12 ≈ D2Nu/12. (81)

This definition can be substituted back into Eq. 79 to obtain a final expression for

the uncertainty in m:

σm =
σn
D

√
12

Nu

. (82)

The result in terms of the sampled light field error is obtained via σm̄ = γσm =

σm∆u/∆s.

σm̄ =
σn/∆s

Nu

√
12

Nu

=
σ̄n
Nu

√
12

Nu

(83)

where σ̄n becomes the registration error as a fraction of pixel size.

The preceding calculations apply to the case where the slope is estimated from

a single 2D slice of the 4D light field where t and v are fixed. In evaluating the

fundamental performance limitation for estimating from the full 4D space, we assume

that Nu samples in u are available for each of Nv = Nu values of v. Working through

the same process for ui = ∆u{1, 1..., 2, 2..., Nu, Nu...} for a total of N2
u samples gives

an improved uncertainty,

σm =
σn
D

√
12√

N2
u − 2

≈ σn
D

√
12

Nu

. (84)
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Once again, the error in terms of the sampled light field is given by

σm̄ = σ̄n

√
12

N2
u

. (85)

Stereo Ranging with Normally Distributed Error.

This section provides a simple framework for comparing predicted performance

between a plenoptic and stereoscopic system. Fig. 29 shows the geometry of the

system to be considered. Within such a stereo vision system, the location of an

object within each camera’s image specifies a line traveling out from the camera into

object space. These two lines form a simple linear system which can be solved to give

a depth estimate in terms of the disparity, d, in the image location between the two

cameras,

zest = Bf/d = f/m (86)

where B is the baseline separating the two camera axes and f is the focal length of

the pinhole cameras [1]. For simpler comparison with the plenoptic camera, we have

reformulated the result in terms of a slope, m = d/B.

B

q1 q2
Δq

f

Figure 29. A Simple Stereo Ranging Setup. The diagram represents two pinhole
cameras with parallel optical axes separated by distance B.
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Figure 30. Equal Baseline for Stereoscopic and Plenoptic Systems.

We assume that feature registration between the two images is performed with

some normally distributed error. That is, d = q1 − q2, where q1 and q2 are ran-

dom variables with normally distributed probability density functions (PDF) having

standard deviation σ. The PDF of the sum of two random variables is equal to the

convolution of the original PDFs. Since the convolution of two Gaussian distributions

is a third Gaussian distribution, having σ2
3 = σ2

1 + σ2
2, it follows that the PDF of d is

normally distributed with a variance of σ2
d = 2σ2. The uncertainty in the slope, m,

expressed as a standard deviation, is then given by

σm =
σd
B

=
√

2
σ

B
. (87)

This equation will be useful in evaluating results within the next section.

An interesting comparison involves the case where the stereo baseline, B, is equal

to the plenoptic lens diameter D (See Fig. 30), and both systems have the same

pixel size, ∆q. We assume that the feature localization error, σ is proportional to ∆q

for the stereo system and ∆s for the plenoptic camera. Using Eqs. 82 and 87, the

uncertainties are related by

(σm)plen
(σm)ster

=
√

6. (88)
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This comparison gives some sense of the advantages and disadvantages of each system.

In general, both types of systems appear to operate on the same general playing field.

The plenoptic camera has the advantage of being a monocular system with a minimal

hardware requirement. Its primary disadvantage is that its performance is coupled to

lens size, which is more limited than the camera baseline of the stereo system. Since

this equation is derived within the context of feature matching, it also does not take

into account the benefits of other approaches to light field ranging to be discussed in

later sections, which improve upon feature matching performance.

Estimator Comparison.

Fig. 31 compares the estimators described in this section for the cases of quanti-

zation error and normally distributed error. The figure illustrates that, for the case

when feature location is known within pixel accuracy, the maximum likelihood esti-

mator is superior until there are more than about 20 angular samples. In general, the

stereo estimator is much worse for this case.

When the feature location estimate is subject to a normally distributed error

term, there is very good agreement between the error obtained via simulation and

the expected error derived previously. The error resulting from SLR estimation falls

off noticeably faster with the number of angular samples than the stereo estimation.

An unexpected result is that, in the case of normally distributed error, it is possible

to achieve better performance than obtained using simple linear regression by using

a modification of the maximum likelihood estimator for the case of uniform error.

The limits in Eqs. 71 and 72 represent the constraints on possible slopes imposed

by the collective uncertainty limits of the data points. In the context of normally

distributed error, this is not a meaningful concept, as no slope is impossible, however

improbable. By scaling the ∆u term in each of the equations, we can select by trial

65



10 20 30 40
0

0.05

0.1

0.15

0.2

Number of Subapertures, N
u

R
M

S
E

 

 

Stereo

SLR

MLE

(a)

10 20 30 40
0

0.05

0.1

0.15

0.2

Number of Subapertures, N
u

R
M

S
E

 

 

Stereo

Stereo Theoretical

SLR

SLR Theoretical
Adjusted MLE for
Uniform Error

(b)

Figure 31. Slope Estimator Performance. Plot (a) applies the Maximum Likelihood
Estimator (MLE), Simple Linear Regression (SLR), and Stereo estimator to the case of
a rasterized line s = round(mu+ b), where m was sampled at 1000 evenly spaced points
between 0 and 100, and b was sampled at 1000 points between -1 and 1. The MLE is
superior at small angular sample numbers, but increasingly gives out to the SLR at
higher numbers. Plot (b) gives the theoretical and simulated Root Mean Square Error
for the case of a line with normally distributed error, s = mu+n, where σn = 0.28 in order
to match the standard deviation of a uniform distribution of unit width. Since changing
m was not found to affect results, m was fixed at 0.1. The RMSE was calculated over
10000 samples for each point. The agreement between the simulation and theory is
strong for both the SLR and stereo case, indicating that the formulas derived in the
previous sections are valid. An unexpected result is that a modification of the MLE
for uniform error gives improved performance over the Simple Linear Regression.
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and error the range which gives the best slope estimation performance. The improved

performance in Fig. 31 (b) was obtained by using a multiplicative factor of 2. The

improvement in performance over the SLR estimator is likely due to the fact that the

MLE estimator as we have presented it uses knowledge about the zero u-intercept of

both of the models discussed in this section, whereas the SLR method assumes that

the intercept is unknown. In reality, the intercept will be some unknown, non-zero

value. We expect that, if an estimator for the case of unknown intercept, as described

in [29], were to be employed, its performance would not exceed that of the simple

linear regression. For this reason, the simple linear regression estimator is employed

within the next section.

4.3 The Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT), as described by David Lowe, is one

common algorithm for matching features between images taken of the same subject

[31], and has become the present ‘gold bar’ standard for image registration within the

computer vision community. This section describes the SIFT algorithm.

SIFT Feature Detection.

In order to achieve scale invariant feature detection, SIFT first generates a scale

space representation of an image. Scale space adds an additional parameter, σ, to

an image, im(x, y), such that im(x, y, σ) gives a blurring of the original image to the

point where only features on the scale of σ can be discerned. Blurring is performed

using a Gaussian filter, which allows repeated convolutions to be efficiently utilized

to keep kernel size small even as σ grows large. Downsampling at each doubling of σ

is also used for the same purpose.
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Feature detection within scale space is performed using a edge detector known as

the Difference of Gaussians (DoG). The DoG representation of an image is obtained

by subtracting the image at one scale, im(x, y, σ), from an image at a larger scale,

im(x, y, kσ).

The Gaussian convolution involved in the generation of scale space is equivalent to

low pass filtering of the image. When one low pass filter is subtracted from another,

wider low pass filter, the result is a band pass filter. Thus, the response of the DoG

filter will be highest to those features whose scale puts them within the passband of

this filter. A point is considered a local extreme when it is uniformly larger or smaller

than all 26 of its nearest neighbors within scale space.

For a simple analytic example, we can consider a feature consisting of a Gaussian

blob with a standard deviation σ. The Gaussian filter used in scale space generation

starts at σ0 and grows by a factor of k = 21/S, where S is the number of steps per

octave. The scale space representation is then given by a Gaussian with variance

σ2
s = σ2 + σ2

0k
2n, which at its peak has a value of

Sn =
1√

2π(σ2 + σ2
0k

2n)
. (89)

Setting the second derivative of this expression equal to zero gives the location where

difference Sn − Sn+1 reaches an extrema. This is easily shown to result in

σ0k
n =
√

2σ, (90)

indicating that the DoG will reach an extrema where the scale space scale is on the

order of a feature scale. This is illustrated graphically in Fig. 32. The first column

shows different layers of the scale space representation of a Gaussian blob with a

standard deviation of 10. The second column shows the difference taken between
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Figure 32. Difference of Gaussians Feature Detector. The first column shows the scale
space representation of a feature consisting of a Gaussian ’blob’ with standard deviation
10. The DoG spatial peak reaches a maximum when scale spaces used to form the DoG
are near the scale of the original feature.

successive layers of scale space. The peak of the difference is plotted in the final

column, and is seen to reach a maxima where the scale space σ is near to that of the

original feature.

SIFT Descriptor.

When features are detected at a particular scale, a feature descriptor is compiled

based on the feature’s surroundings at that scale. This ensures that those same

surroundings will be used to build a descriptor in any other image at an arbitrary

scale where the same feature is detected. Since SIFT is meant to accommodate the

possibility of such changes in scale between images, all features detected in one image,

regardless of scale, will traditionally be compared with all features of another image

during the matching stage.

The SIFT descriptor uses image gradient information to characterize the local

neighborhood of a feature. The gradients calculated within an Nx by Ny region are
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first multiplied by a Gaussian weighting function, and then sliced into any number

of smaller subregions (The original SIFT implementation described by Lowe used

a 4 by 4 grid of subregions). Histograms of the image gradient in each region are

then concatenated to form a descriptor vector for the feature. To achieve rotation

invariance, the direction of the maximum gradient is first subtracted from all gradient

orientations prior to histogram formation.

SIFT Implementation.

Though SIFT is designed to perform image registration in the presence of im-

age scaling, rotation, and translation, not all of these factors are present within the

plenoptic ranging problem. Eliminating these extra degrees of flexibility allows for

the development of a modified feature matching algorithm, which should outperform

a full application of SIFT. A few of these changes are listed here.

1) Since neighboring subaperture images are not rotated from each other, feature

vectors do not need to use orientations relative to the gradient of greatest magnitude.

This stands to eliminate errors resulting when two gradients are of nearly the same

magnitude.

2) To achieve scale invariance, SIFT builds feature vectors from the scale space

layer at which the feature was detected. Descriptor vectors are thus ‘scale normalized,’

and can be compared to features detected at any scale within a separate image. Since

no rescaling occurs between subaperture images, in principle it should be possible to

only compare a feature in one image with features detected at the same scale within

a neighboring image. In practice, we allow all features within the same octave to be

compared, as the DoG detector will not with perfect consistency detect a feature at

the same scale under image translation.
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3) To accommodate arbitrary translation, rotation, and scaling, SIFT compares

all features detected within one image to all features within a second image. This

means that the location of a feature must be definite in all dimensions. For example,

edges whose location along the edge is difficult to define, must be culled by the

SIFT algorithm. In plenoptic range finding, the transformation between neighboring

subapture images is constrained to a translation along a known direction. This has

two consequences. Firstly, features need only to be matched with features in the

second image along the known line of translation. Secondly, detection of edges can be

allowed and encouraged by removing the requirement for the DoG to be a maximum

in the direction transverse to translation.

Feature Matching.

Feature matching is performed by searching for the least Euclidean distance be-

tween feature vectors. In cases where a feature in one image does not have an equiv-

alent within the second image, due to either detection failure or false detection, it is

expected that the minimum Euclidean distance will not deviate far from the next-

smallest distance. In order to remove such cases, only matches are retained where

the minimum distance is smaller than all other distances by at least some specified

factor which we will refer to as a matching threshold.

Stereo Ranging using SIFT.

In this section we examine the results of stereo matching using SIFT. Stereo

matching is performed using the two extreme subaperture images of a synthetic light

field. Since ground truth for depths within the synthetic light field is known, this can

be used to calculate the actual disparity for each image point. The two performance
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metrics examined in this section are the variance of the estimated disparity from the

actual disparity across the entire imag, and the number of matches.

SIFT performance is based on a number of different parameters alluded to in

the previous sections. The starting scale of the first octave of scale space, which

gives the amount of initial blurring of the image, determines the scale of the smallest

features that will be detected. A detection threshold determines how large a local

DoG extrema must be in absolute value in order to be classified as a feature. Finally,

the matching threshold determines how close a match must be, compared to other

close matches, in order to be retained as a true match. Each of these parameters

was varied across a range of values, using both the author’s modified implementation

of SIFT and a standard implementation called VLFeat, meant to closely mimic the

specifications of Lowe’s paper [32].

Fig. 33 shows the results for the authors SIFT implementation, while Fig. 34

shows the results for VLFeat. As expected, the author’s implementation does provide

a much greater volume of matches, with all parameters being equal. However, the

variance achieved with VLFeat is also considerably lower than that of modified SIFT.

Across the board, increasing the matching threshold leads to better performance

at the cost of match count. Both of these effects are expected. Though the number

of matches continues to drop as the matching threshold is increased, the falloff in

variance diminishes quickly after a value of about 2, making this an optimal choice.

Increasing the detection threshold, while reducing the number of matches, does not

seem to result in better accuracy. This may indicate that a non-zero detection thresh-

old leads to detection failure (a feature detected in one image, but not in a second

image). The trend with respect to initial blurring scales is slightly more difficult to

interpret. Nonetheless, in both cases, an initial blurring scale of σ = 0.8 provides the

best results.
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Figure 33. Stereo Matching Performance using Modified SIFT (Author’s Implemen-
tation). (a) and (b) show the variance from ground truth and number of matches,
respectively, in terms of matching threshold and level of initial blurring. The multiple
lines at each blurring level correspond to different detection thresholds. (c) and (d)
explicitly show the dependence on detection threshold, at a matching threshold of two.
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Figure 34. Stereo Matching Performance using SIFT (VLFeat). (a) and (b) show the
variance from ground truth and number of matches, respectively, in terms of matching
threshold and level of initial blurring. The multiple lines at each blurring level corre-
spond to different detection thresholds. (c) and (d) explicitly show the dependence on
detection threshold, at a matching threshold of two.
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Figure 35. Maps from Stereo Matching using SIFT. (a) and (b) show the maps yielded
by the author’s SIFT implementation and by VLFeat, respectively, using the optimal
conditions determined from Figs. 33 and 34, namely, with σmin = 0.8, Matching Thresh-
old = 2, and Detection Threshold = 0. VLFeat yields better accuracy at the cost of
match count.

Fig. 35 shows the depth maps generated by each method using optimum param-

eters. In each case, the minimum blurring was chosen as σmin = 0.8, the detection

threshold was set to zero, and the matching threshold was set to 2. Though the au-

thor’s implementation provides a much greater number of matches, the variance from

the true disparity is large compared to that achieved using VLFeat. Since the intent

of this research is to assess the performance limits of the plenoptic camera, VLFeat

is used in further analysis. Future work might further explore the tradeoffs existing

between the two implementations, and how overall performance could be optimized.

Light Field Ranging using SIFT.

Improved performance over the stereo-matching results presented in the previous

section should be possible by using the intermediate subaperture images, in addition

to those located at the two extremes, to estimate disparity. In its fullest application,

this would entail feature matching between each subaperture image and its 4 near-

est neighbors. In this section, we deal with the simplified case where one angular
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Figure 36. Feature Matching Framework. In stereo ranging, slope estimates are formed
using only two images from the stack. When the entire light field is available, interme-
diate images can be used to achieve better estimate via simple linear regression.

coordinate, u, is varied while the other, v, remains fixed, thus giving Nu different

subaperture images.

The approach employed is to establish feature matches between each subaperture

image and its two neighbors at u + 1 and u − 1. These matches are sorted in order

to produce a matrix in which each column corresponds to a feature and each row

corresponds to a subaperture image, cell values giving the location of the feature

within the image.

If the same feature is being accurately detected and matched within each image, it

should follow that the disparity between successive images will be nearly the same size.

To remove cases where features are improperly matched, we calculate the variance of

the disparity in each column, and throw out columns in which the variance exceeds

a specified threshold.

Fig. 36 contrasts the approach taken here with the stereo based approach of the

previous section. Given increased number of sample points, a simple linear regression

becomes an appropriate approach to determining the light field slope. Fig. 37a shows,
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Figure 37. Simulated Camera Performance with SIFT. In (a), Nu is increased according
to the first scheme in Fig. 27, such that γ stays constant. The improvement in accuracy
with Nu falls short of that predicted in Eq. 85. Also, the results obtained using linear
regression do not significantly improve upon results obtained via stereo. (b) shows the
uncertainty for the other two schemes in Fig. 27. Increasing Nu in either of these
manners does not lead to an overall improvement in uncertainty, represented by the
continuous light field slope error.

for both the case of slope estimated using the two extreme images (stereo) and the

case of slope estimated from the entire range of images (linear regression), how slope

uncertainty diminishes as angular samples are added in a manner corresponding to

the first scheme in Fig. 27.

Interestingly, the performance of the stereo estimator is remarkably close to that

of the linear regression estimator. A comparison of Eqs. 82 and 87 indicates that the

error when slope is calculated using the linear regression should drop off faster than

the stereo case by an additional factor of 1/
√
Nu.

A plausible explanation for this discrepancy might be that the feature localization

error does not match the assumption of a normally distributed probability density

function. However, Fig. 38 illustrates that the localization error distribution is fairly

well approximated by a normal distribution. The localization error in the figure was

calculated by using the average of the feature locations across all subaperture images

as a true location for the central subaperture image. True locations for the other

images were then calculated by using the known light field slope obtained from the
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Figure 38. SIFT Localization Error. Corresponds to the case pictured in Fig. 37a. The
shape of the error distribution remains largely constant across the range of subaperture
images. The distribution is well approximated by a normal fit. The fit shown in (b)
has a coefficient of determination, r2, of 0.96.

ground truth depth map. Further analysis is necessary to determine if the slight

deviation from the distribution and its normal fit shown in the figure is sufficient to

account for the failure of Fig. 37a to match with theory.

In Fig. 37a, angular samples are added by increasing the simulated camera diam-

eter D and decreasing the detector size ∆q in such a way that the factor γ = m̄/m

remains constant. Fig. 37b shows the cases where angular resolution is added in ac-

cordance with the two other schemes in Fig. 27. Since these tradeoffs do not maintain

a constant γ, the sampled light field slope error and continuous light field slope error

are shown separately.

Though all three cases show a fall-off in sampled light field slope error with in-

creasing number of angular samples, the dependence falls short of that described in

equation 83. This, in turn, leads to unexpected behavior for the continuous light

field slope error. For example, though changing the detector size to increase Nu while

keeping D constant should lead to a decreased uncertainty according to Eq. 84, the

behavior in Fig. 37b is constant with Nu.
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4.4 Range Finding using Epipolar Plane Images

The feature matching framework is useful for a number of reasons. Feature match-

ing using SIFT-like algorithms is a very commonly employed technique for determin-

ing structure from imagery within the computer vision community. Therefore, depth

estimation using SIFT represents an obvious first approach to the plenoptic ranging

problem. A second advantage of feature matching is the straightforward uncertainty

analysis available via the simple linear regression estimator. Finally, as discussed in

the previous section, when registration between images is linked to an entity having

an existence within the scene itself (namely, a feature), this entity can be localized

to within subpixel precision, allowing for highly accurate depth estimates.

For these reasons, it makes sense to employ feature matching as a first look at

plenoptic rangefinding. However, the high dimensionality of the light field also allows

for other more direct methods which, in their simplicity, afford considerable advan-

tages over the use of SIFT. These methods operate directly on either the light field

itself or on Epipolar Plane Images (See section 3.4).

Since a point source must appear as a sloped line within an EPI, one simple

approach is to search for this line by looking for slopes along which the EPI has low

variance or photo-consistency. This can be thought of as the equivalent of image

registration through correlation, applied to the light field.

Slope estimation using Light Field Photo-consistency.

Fig. 39 shows an Epipolar Plane Image (EPI). As discussed in section 3.2, the

EPI is composed of sloped lines, each of which maps to a single point within the

scene corresponding to the light field, such that the slope of the line relates to the

distance to the point. Now, imagine calculating the variance of an EPI along each of

its vertical columns. In areas containing vertical lines, the values contained within a
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Figure 39. Calculation of Photo-Consistency. The figure shows a portion of an EPI un-
der varying degrees of shearing. The variance along the dotted white line is minimized
with the shearing slope matches the slope of the lines in the light field.

single column would stay consistent, leading to a low variance. On the other hand, in

areas where a column is crossed by multiple slanted lines, the variance will be higher.

This suggests the approach of estimating slope by shearing the light field by dif-

ferent amounts, and looking for vertical lines identified by low variance at each degree

of shearing. Following this approach for a given light field slice will result in an Ns

by Nm matrix of variance values, where Ns is the width of the slice and Nm is the

number of slopes used for shearing the EPI.

This matrix can be visualized as a disparity space image, or DSI, as in [7]. Fig.

40 shows a DSI and depth map built from the same light field. Each row of the image

corresponds to a different degree of shearing of the light field slice. The value of

each pixel gives the variance calculated from the vertical columns within the sheared

slice. To avoid confusion with the concept of variance within the context of random

variables, the term photo-consistency is henceforth used in place of variance for this

value.

Close observation reveals that the DSIs in Fig. 40 (b) and (c) are composed of a

fundamental unit shaped something like a bundle of lines passing through a central

minimum. The bundles are especially prominent in two locations, corresponding to

the edges of the ball seen in the depth map shown in the figure. These bundles are

known as DSI shadows, since they seem to shadow certain points on the DSI. The
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Figure 40. Depth Estimation Using Photo-Consistency. (a) shows a slope map gen-
erated using the photo-consistency technique. (b) shows a DSI corresponding to the
slice of (a) outlined in blue. Note the shadows located at the edges of the ball, which
cover a small portion of the line of minimum values on each side. (c) gives the same
DSI, but generated using only the lower angular half of the sheared light field. This
causes the shadows to tilt inward above, allowing for a better estimate of the occluded
region. (d) and (e) show how the error changes when this extra measure is taken in
regions where occlusions are detected. The improvement is most visible in the upper
left corner of the ball.
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Figure 41. DSI Shadow. Each point on a DSI maps to a line in the Light Field along
with the variance is taken to provide the value of the DSI point. The shadow of a
DSI point of interest is composed of all those points whose corresponding lines on the
light field overlap the line represented by the point of interest. The figure illustrates
that there will be a range of slopes outside of this shadow, which increases with spatial
separation s.

shadowed points are those corresponding to the actual slope of the light field (vertical

position on DSI) at a given location (horizontal DSI position). These appear as

minima within the DSI column. The shadow of a DSI minimum consists of all those

points whose corresponding lines on the light field cross the line corresponding to the

DSI minimum. The shadow will be prominent when the light field contains an edge

or strong gradient, as in the two points in the figure.

Fig. 41 shows the range of sloped lines m̄ ∈ (m̄2, m̄3) which will not intersect with

a line at slope m̄1 located a distance s̄ away. Solving the simple system yields

m̄2,3 = m̄1 ∓ 2s̄/Nq. (91)

The shadow region consists of those lines outside of the range (m̄2, m̄3), or those

satisfying

|m̄− m̄1| > 2
s̄

Nu

(92)

This equation defines two fingers which meet at m̄1 where s̄ = 0, and recede toward

the DSI edges as s̄ increases. This is the shape seen in Fig. 40.

DSI shadows can have unwanted effects near object edges. In this context, the

DSI shadow represents the effect of one object occluding another over a range of
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subaperture images. Notice in the first DSI in Fig. 40 that the line of minimum

points on the left of the image seems to disappear behind the shadow corresponding

to the edge of the ball. Various sophisticated approaches are possible for dealing

with such cases. The approach employed here is a modification of that described in

[7], wherein successively distant ‘tubes’ of equidistant portions of the light field are

extracted prior to recalculating the DSI in an iterative process. In the context of

a plenoptic camera, the extent of occlusions is generally more limited than for the

EPIs in [7], which were collected by a track mounted camera. Even in the presence

of occlusions, we can normally count on having at least one half of the light field

occlusion free. Therefore, a possible approach is to 1) detect occlusions, 2) determine

the ‘directionality’ of the occlusion, and 3) use a precalculated DSI generated from

the occlusion-free half of the light field to estimate slope.

A region is considered to be occluded if the variance generated from a given half

of the EPI is less than the variance generated from the full EPI by a specified factor,

and if the location of the two minima are separated by more than a specified offset.

A factor of 10 and a 0.1 offset threshold yielded good results.

The second DSI in Fig. 40 was generated by using the bottom half of the DSI.

Notice how the DSI shadows bend inward, exposing minima which were previously

covered. The two error maps in the figure show how this correction leads to reduced

error at object boundaries, although the degree of the improvement is variable.

Though DSI shadows can cause problems at object boundaries, in general, the

shadow helps ‘frame’ the DSI minimum, ensuring that it will be easily detected. This

is especially true when the image gradient is high. In general, we expect that slope

estimation performance will be dependent on gradient scale, especially in the presence

of noise.
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Sampled Light Field Slope Uncertainty.

To formalize these observations, we consider the case of a light field slice composed

of a horizontal gradient with additive Gaussian noise,

L(s, u) = gs+ n(s, u) (93)

where n ∼ N(0, σ2) is a zero mean, normally distributed random variable having

variance σ2, and g is the spatial gradient (gradient within a subaperture image):

g =
dL

ds
. (94)

For the sampled light field, L̄(s̄, ū) = ḡs̄ + n, we assume that the gradient is scaled

according to the simple relation,

ḡ =
dL

ds
∆s =

dL

ds
∆qNu, (95)

although we will later see that this assumption is not completely valid, and that a

robust treatment of gradient scaling under the effect of sampling is a difficult problem

worthy of greater attention. Next, we define a sloped slice of the sampled light field,

Sm(u), as

Sm(u) = L̄(m̄ū, ū), ū ∈ [−(Nu − 1)/2, (Nu − 1)/2]. (96)

A method of interpolation, discussed in more detail later, is used to provide values

of L at non-integer values of s̄ = m̄ū. We want the photo-consistency of this slice,

which we define as Pm̄,

Pm̄ = var(Sm) = var(ḡm̄ū)) + var(n) = var(ḡm̄ū) + σ2
s , (97)
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which follows because variance is a linear operator when the variables being summed

are uncorrelated. The s subscript is added to σ to annotate that this is the sample

variance, and not the variance of the normal distribution used to define the ran-

dom variable, n. This will become of importance later on. The variance of ḡm̄ū is

calculated as

var(ḡm̄ū) =
1

Nu − 1

(Nu−1)/2∑
−(Nu−1)/2

(ḡm̄ū− < ḡm̄ū >)2 =
2m̄2ḡ2

Nu − 1

(Nu−1)/2∑
ū=1

ū2 (98)

which results because the mean value < ū >= 0. Since
∑n

x=1 x
2 = n(n+ 1)(2n+ 1)/6

[30], it follows that

var(ḡm̄ū) =
m̄2ḡ2

12
Nu(Nu + 1) (99)

and

Pm̄ =
m̄2ḡ2

12
Nu(Nu + 1) + σ2

s . (100)

Where σ = 0 this equation defines a parabola in m, where the concavity of the

parabola increases with the number of angular slices Nu and decreases as the gradient

becomes shallower. Fig. 42 compares two parabolas generated using Eq. 100 and

by actually shearing a gradient image and calculating photo-consistency. The two

parabolas are visually identical.

When σ > 0, the parabola will be affected by noise related to variation in the

sample variance of n, σ2
s :

var (Pm̄) = var

(
m̄2ḡ2

12
Nu(Nu + 1)

)
+ var(σ2

s) = var(σ2
s) (101)
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Figure 42. Photo-Consistency of Gradient without Noise. The plots were generated
using Eq. 100 and through direct simulation. The plots are visually identical.

where the sample variance, σ2
s (equivalently understood as the photo-consistency of

the noise component of the light field), expands to

var(σ2
s) = var

(
1

Nu − 1

Nu∑
i=1

(ni − µ)2

)
. (102)

We approximate that the sample mean, µ, is equal to zero. Since var(ax + by) =

a2var(x)+b2var(y), where a and b are constants and x and y are uncorrelated random

variables, the variance operator can be brought inside of the summation:

var

(
1

Nu − 1

Nu∑
i=1

n2
i

)
=

1

(Nu − 1)2

Nu∑
i=1

var(n2
i ) =

Nu

(Nu − 1)2
var(n2) (103)

where

var(n2) =

∫
n2f(n)dn = 3σ4 (104)

and f(n) = N(0, σ) is the probability density function for n. The integral is solved

via integration by parts. Combining Eqs. 101, 103, and 104 gives the variance of the

photo-consistency,

var (Pm̄) =
Nu

(Nu − 1)2
3σ4 ≈ 3

Nu

σ4. (105)
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(c) σ2 = 0.01

Figure 43. Photo-Consistency of Gradient with Noise. Plots were generated using Eq.
106 with increasing amounts of Gaussian noise.

This allows us to modify Eq. 100 by expanding the sample variance, as in

Pm̄ =
m̄2ḡ2

12
Nu(Nu + 1) + σ2 + p (106)

where p ∼ N(0, σ2
p) is a zero mean, normally distributed random variable with stan-

dard deviation σp =
√

3/Nuσ
2.

Fig. 43, shows a range of DSI slices generated using Eq. 106. Though, as will be

shown below, this is not an accurate representation of the results of shearing a noisy

gradient, it does provide a simple framework for thinking about the effects of noise on

slope estimation. From the figure, it is clear that, in the presence of too much noise,

the minimum of the DSI may no longer exist at the vertex of the parabola, leading

to a faulty estimate.

In order to quantify this effect, we determine how far the slope m̄ must change in

order for the corresponding change in Pm̄ to equal the standard deviation σp of Pm̄:

P∆m̄ − P0 = σp. (107)
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Figure 44. Simulated Photo-Consistency of Gradient with Noise. Plots were generated
via direct simulation using noisy gradients. Deviation from the noiseless parabola in
Fig. 42 is not uncorrelated with changing slope, as in Fig. 43.

Beyond this point, we consider that it is unlikely for noise to produce a false minimum.

The equation solved by

∆m̄ =
1

ḡ

√
12σp

Nu(Nu + 1)
=
σ

ḡ

√
12

Nu(Nu + 1)

√
3

Nu

≈ 4.5σ

N
5/4
u ḡ

. (108)

This indicates a strong dependence in ranging uncertainty on the intensity of noise,

the scale of any gradient features, and the number of angular samples.

Fig. 44 shows some photo-consistency curves resulting from shearing a noisy

gradient image over a range of slopes. There is little resemblance to the plots in Fig.

43. The reason for this is that Eq. 106 is derived from the assumption that both

ḡ(s̄) and n(s̄, ū) exist on a continuous space in s. This is to allow for the shearing

operation, since the angled slice Sm = L̄(m̄ū, ū) calls for evaluation of L̄ at arbitrary

real values of s̄. In reality, L̄(s̄, ū) is an image having a finite number of samples,

and interpolation is required to shear at arbitrary slopes. The end result is that the
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Figure 45. Photo-Consistency of Gaussian Noise. Plots were generated using varying
amounts of Gaussian noise, with no gradient. Using linear interpolation to perform
shearing results in cusps at certain points, particularly m = 0, where the effective size
of the interpolation kernel goes to unity. Using an interpolation kernel that maintains
a more constant size helps eliminate these cusps.

variance of the photo-consistency of any given slice of an image will obey Eq. 106

across a set of images having different noise content. However, in a particular image,

the photo-consistency of a slice at one slope will not be uncorrelated from the photo-

consistency at nearby slopes. This explains why the plots in Fig. 44 show deviation

from the ideal parabola, but not in the quickly varying manner of Fig. 43.

A second noteworthy feature of the plots in Fig. 44 is the cusp appearing at m̄ = 0

in the two rightmost plots. This cusp can be seen more clearly in Fig. 45, where the

photo-consistency of only the noise component is plotted. The central maximum

for the curves generated using linear interpolation is explained by the fact that at

m̄ = 0, no interpolation is needed. Since interpolation has the effect of convolving

the noise and thus reducing its variance, the absence of interpolation at m̄ = 0 leads

to a heightened variance compared to points where interpolation is employed. The

other cusps are likely located at points where the need for interpolation is minimal.

In order to ameliorate this effect, we employ a method of interpolation which uses

a convolution kernel that maintains a constant size. The figure illustrates how this

is effective in removing the cusps, although it also has the effect, mostly benign, of

reducing the variance everywhere by some factor.
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Figure 46. Estimation Uncertainty: Standard deviation of slope estimate from true
value as a function of Gradient Scale (Ng) and Number of Angular Samples (Nu), at
two different noise levels. (a) and (c) give simulation results, while (b) and (d) give
the results predicted by Eq. 108. The analytic result is not formulated as a standard
deviation, but it scales in the same way. The values in (b) and (d) in this figure and in
Fig 47 haven been divided by a factor of 2.5 in order to make comparison easier.

In order to verify slope uncertainty defined by Eq. 108, simulations were performed

by shearing a gradient of variable scale, having a variable number of angular slices,

and subject to Gaussian noise of varying standard deviation.

Figs. 46 and 47 illustrate that the relationship in Eq. 108 remains valid, despite

the differences between the assumptions made in its derivation and the actual behavior

of the sheared, noisy gradient illustrated in Fig. 45. The figures illustrate that,

although the number of angular samples does not appear to be highly important at
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Figure 47. Estimation Uncertainty (cont.): Standard deviation of slope estimate from
true value. (a) and (b) give analytic and simulation results, respectively, as the number
of angular samples (Nu) and noise (σ) are varied, and with a gradient scale, Ng = 5. (c)
and (d) give the results at Nu = 9, while varying noise and gradient scale.
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low noise conditions, at higher noise levels, an increased number of angular samples

results in much better accuracy.

Continuous Light Field Slope Analysis.

The analysis of the previous section focuses on uncertainty in estimating the slope

of the sampled light field. Though this analysis is valid within that context, it is

insufficient to assess trade-offs in plenoptic camera construction since it ignores the

way that the sampled light field slope itself is affected by the changes in sampling

characteristics brought about by changing camera parameters. In this section, those

effects are considered.

The sampled light field slope and the continuous light field slope are related by

the ratio γ, as in

m̄ = mγ = m
∆u

∆s
= m

D/Nu

Nu∆q
= m

D

∆q

1

N2
u

. (109)

We assume that a sampled spatial gradient is scaled by the sampling interval, ∆s, as

in

ḡ =
dL

ds
∆s =

dL

ds
∆qNu. (110)

Upon making these substitutions into the photo-consistency equation, Eq. 106, the

continuous-slope photo-consistency, Pm, is given by

Pm =
g2m2D2

12
+ σ2 + p. (111)

The slope uncertainty, ∆m is then given by

∆m ≈ 4.5

N
1/4
u

σ

gD
. (112)
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The most important difference between this equation and Eq. 108 is the dependence

on Nu. If the main lens diameter D is held constant, the improvement gained by

adding angular samples is only the small N
−1/4
u dependence related to an improved

signal to noise ratio. The equation implies that the pixel size ∆q is not directly related

to uncertainty. Thus, the impact of increasing Nu by expanding the microlens size

∆s or by decreasing the pixel size ∆q should be similar. In the next section, these

dependencies are verified experimentally within the context of a synthetic light field.

Experimental Results.

Fig. 48 shows depth maps generated using the photo-consistency technique under

differing noise conditions, along with associated DSI images for a portion of the scene.

Notice that, as the noise level increases, the DSI minima become less distinct until

reaching a point where they are difficult to identify. This leads to the noisy behavior

seen in the depth maps themselves.

Fig. 49 shows the photo-consistency as noise increases in a non-logarithmic scale

for three different points selected from the scene in Fig. 48. In all three cases, the plot

starts out having a parabolic shape. This validates the previous section’s prediction

that photo-consistency curves should take on the shape of a parabola in the vicinity

of a minimum. As the amount of image noise increases, the photo-consistency curve

itself becomes noisy, leading to detection of false minima. Where the image gradient

is stronger (leftmost plot), the parabola is steeper, making it harder for variations

due to image noise to create a false minimum of significant magnitude. This is why,

in Fig. 48, even under large noise conditions, strong edges like those of the die and

plank remain well resolved.
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Figure 48. Slope Maps From Noisy Light Fields. As noise increases, the DSI minimum
becomes increasingly poorly defined, leading to the noisy slope estimates seen in the
maps.
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Figure 49. Photo-Consistency with Noise. Plots are associated with the indicated
points of the light field in Fig. 48 (a). The plots grow more erratic as noise increases.
Where the image gradient is higher, photo-consistency minimums stay more localized
under the effects of noise.

Simulated Camera Analysis: Varying Lens Diameter.

This chapter’s introduction outlines a number of ways in which the synthetic light

fields provided by HCI can be resampled to simulate changes to the plenoptic camera

configuration. The simplest of these is illustrated in the first column of Fig. 27. This

corresponds to increasing the camera lens diameter while decreasing the detector sizes.

The transformation increases camera lens diameter while decreasing the detector sizes

in a manner that maintains the ratio γ = ∆u/∆s. Since γ relates the continuous and

sampled light field slopes, keeping γ constant means that the behavior of σm will

mimic that of σm̄ under changes in Nu brought about by this transformation.

Fig. 50 shows σm̄ under the impact of varying noise and changing number of

angular samples in the manner described above. According to the model derived

above, uncertainty should grow linearly with noise and fall off with 1/N
5/4
u . However,

performing an exponential fit to the results shows that the growth with noise is closer

to
√
σ and the fall-off under changing Nu closer to 1/

√
Nu.

A clue to the reason for these discrepancies is found within the slope maps in Fig.

48. Certain regions of the map quickly display estimation noise having an amplitude

that spans the entire possible range (from the smallest possible to greatest possible
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Figure 50. Experimental Slope Uncertainty, Varying Lens Diameter: Effects of increas-
ing the number of angular samples while holding ∆s and ∆u constant. This requires
simultaneously increasing the lens diameter and decreasing the detector size. The expo-
nential fit in (d) follows N−0.48

u σ−0.56, rather than the expected N−1.25
u σ−1. Discrepancies

with theory are likely due to the faulty assumption of ’infinite’ gradients.
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slope). Adding more noise to the light field therefore makes no difference in the

estimation noise seen in the depth map for such regions.

This observation is explained in the following manner: in developing the analytic

model, we treat the gradients involved as having indefinite extent. Throughout the

section, photo-consistency plots are shown as parabolas of indefinite extent, corre-

sponding to the assumption of an indefinitely extensive gradient. However, in a true

scene or image, most gradients exist as part of edges or patterns of textures. For

such cases, as the shearing slope moves away from actual light field slope, the photo-

consistency will typically reach a noise floor at which parabolic behavior ceases. Once

the variation in the photo-consistency induced by light field noise reaches a magni-

tude exceeding this floor, the photo-consistency minimum is liable to jump outside of

the parabolic region, resulting in an error which spans the entire possible range.

It follows that, as noise levels increase, a large component of the increase in error is

due to additional samples entering this regime of where error is more or less uniformly

distributed across the entire possible range. At some point, a saturation-like behavior

must take place as the number of locations displaying this behavior approaches the

total number of locations, and the number of opportunities for new instances of the

behavior to come about diminishes. This likely explains why, in Fig. 50, uncertainty

appears to grow linearly with noise for a while before reaching a point where growth

diminishes.

Fig. 51 illustrates that, though adding additional angular samples increases the

concavity of the parabola within the parabolic region of the photo-consistency curve,

it does not significantly impact height of the floor surrounding the parabolic region.

This explains why the fall-off in Nu is less than expected: once a location begins to

display unbounded behavior, increasing Nu does little to improve estimation accuracy.
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Figure 51. The Effect of Changing Number of Subapertures on Photo-Consistency.
Increasing the number of subapertures causes the parabolic region of the curve to
become tighter. But the floor outside of the parabolic region actually drops.

Simulated Camera Analysis: Varying Detector Size.

Resampling the light field according to the second scheme in Fig. 27 corresponds to

changing the size of the detector elements while keeping all other parameters constant.

The effect of this variation is shown in Fig. 52. The continuous light field slope error

appears to decrease linearly as Nu increases. However, when an exponential fit is

performed, the falloff comes close to the predicted (1/Nu)
0.25 dependence, with the

best fit falling off with (1/Nu)
0.17. Similarly, the sampled light field slope error falls

of as (1/Nu)
1.15 compared to the theoretical prediction of (1/Nu)

1.25.

Simulated Camera Analysis: Spatial/Angular Trade-off.

The effect of changing the microlens size ∆s is of particular interest because it

induces a tradeoff between angular and spatial sampling density, as seen in the third

scheme of Fig. 27.

Fig. 53 compares DSI images generated from light fields within the tradespace at

Nu = 3 and Nu = 9, subjected to Gaussian noise. Though the images appear to be

impacted differently by the light field noise, it isn’t clear that one better highlights the

minima associated with correct slope. The second and fourth images show banding
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Figure 52. Experimental Slope Uncertainty, Varying Detector Size: Effects of increas-
ing the number of angular samples Nu by decreasing detector size. (a) through (c)
show continuous light field slope error, while (d) shows sampled light field slope error.
The best fit for (c) follows N−1.15

u , while the fit to (d) follows N−0.17
u , in good agreement

with the theory.
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Figure 53. Comparison of DSIs Generated from Noisy EPIs. (a) and (b) use a light
field having three angular samples, while (c) and (d), have nine angular samples, and
correspondingly lower spatial resolution. (a) and (c) use a Gaussian interpolation kernel
with a 1 pixel standard deviation and having a constant size of three pixels, while (b)
and (d) use linear interpolation. Where linear interpolation is used, cusp artifacts are
apparent as horizontal stripes.

100



3 4 5 6 7 8 9

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x 10
−3

σ = 0.02

σ = 0.04

σ = 0.06

σ = 0.08

σ = 0.1

S
lo

p
e
 E

rr
o

r,
 σ

m

# of Subapertures, N
u

(a)

0

0.05

0.1

4

6

8

0.5

1

1.5

x 10
−3

# of Subapertures, N
uNoise, σ

S
lo

p
e
 E

rr
o
r,

 σ
m

(b)

Figure 54. Experimental Slope Uncertainty, Varying Microlens Size: Effects of angu-
lar/spatial resolution trade-off achieved by varying microlens size on slope uncertainty
under presence of noise. The increase in performance with angular resolution is mini-
mal.

artifacts associated with linear interpolation, which are suppressed by the use of a

Gaussian interpolation kernel rather than linear interpolation, as discussed above.

The estimation performance is quantified in Fig. 54, which shows the error under

different noise conditions as ∆s is altered (effecting a change inNu). The improvement

in performance with Nu in this case is hardly noteworthy. To understand why this is

the case, it is necessary to start by assessing the agreement between the sampled light

field slope error and Eq. 108. Next, the transformation between continuous light field

quantities and sampled quantities must be examined.

Fig. 55 shows the sampled light field slope error as a function of image gradient, ḡ,

and number of angular samples, Nu. Viewing uncertainty in terms of image gradient is

necessary in this case, since image gradient is not expected to remain constant under

the spatial resampling involved in altering microlens size. The best fit to the data is

noteworthy because the dependence on Nu is a more dramatic N−2
u than the expected

N
−5/4
u falloff. This is somewhat surprising considering the fact that the continuous

light field slope error shows almost no dependence on Nu. The stronger dependence

than expected is slightly disconcerting and hints at some form of systematic error.
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Figure 55. Experimental Slope Uncertainty, Varying Microlens Size (cont.): (a) shows
the sampled light field slope estimation error as a function of image gradient and
number of angular samples for noise level σ = 0.4. The exponential fit, shown in (b)
follows N−2

u σ−0.37. Though the dependence on Nu is greater than expected, it does not
result in a strong dependence for the continuous slope error in Fig. 54. (c) shows the
distribution of the image gradient as ∆s increases. The distribution shifts slowly to the
right, but not nearly to the extent expected according to the simple scaling assumption
that ḡ = g∆s, as shown in (d).
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The explanation possibly involves the uniform estimation error behavior discussed

above, wherein the average error becomes coupled to the separation of the bounds

of the shearing slope used to generate the DSI. If the same continuous slope range

is used, this separation does diminish with a 1/N2
u dependence for the sampled light

field slope.

That the strong dependence on Nu seen here does not result in a stronger depen-

dence in Fig. 54 is due to two discrepancies between the gradient-related behavior

assumed in the development of Eq. 112 and the behavior observed in Fig. 55. Most

importantly, the falloff of error with image gradient displays a relationship closer to

ḡ−1/3 than the expected ḡ−1.

A second discrepancy worth noting involves the scaling of image gradients under

the impact of spatial resampling. In the derivation of Eq. 112, it was assumed that

continuous gradients would relate to sampled gradients according to ḡ = g∆s. Fig.

55 shows the distribution of gradients as resampling takes place to simulate altering

the microlens size. As ∆s increases, the distribution gradually shifts to the right.

However, under the assumption that ḡ1/ḡ2 = ∆s1/∆s2 = α, we note that

f(ḡ2)dḡ2 =
1

α
f
( ḡ1

α

)
dḡ1. (113)

Fig. 55 shows a fit of the distribution at Nu = 3 to the distribution at Nu = 9 using

the transformation shown here. For the best fit, α = 1.3. However, the expected

value for α over this range is 3. The figure also shows what the distribution would

look like if the assumption about gradient scaling had been correct. In theory, the

updated relation ḡ ≈ 0.3g∆s should lead to an increased uncertainty for any type of

sampling, without affecting the dependence on Nu.

However, the altered fall-off in ḡ has greater ramifications. To show this, we start

with an empirical model which reflects the altered dependencies seen if Fig. 55, given
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by

∆m̄ =
4.5σ

N2
u ḡ

1/3
. (114)

Upon substituting ∆m = ∆m̄/γ and ḡ = g∆s/3, the equation for continuous quan-

tities is

∆m ≈ 6.5σ∆q2/3

DN
1/3
u g1/3

. (115)

Due to the altered gradient scaling, the N−2
u dependence for the sampled case is

reduced to a very mild N
1/3
u dependence for the continuous case.

4.5 Range Finding via Refocusing

Depth through Refocusing.

The ability to produce refocused imagery is one of the most striking capabilities

latent in the light field captured by the plenoptic camera. When properly focused

on an object within a scene, an image will be characterized by sharp edges, steep

gradients, and comparatively large amounts of energy in high spatial frequencies.

Thus, a natural approach to range finding is to search for refocused images containing

these characteristics.

In the spatial domain, this means producing a stack of refocused images and

determining in which frame the image gradient reaches a maximum at each pixel.

This approach bears strong similarity to the photo-consistency approach discussed in

the previous section. Indeed, refocusing involves the same shearing operation used

there to identify the slope of an EPI. While the photo-consistency approach looks

for low variance in the samples that will be summed together to make up the final

image pixel, the depth-through-refocusing technique first performs this summation,

and then looks for the high spatial gradients that are made possible when accurate

refocusing minimizes the effective point spread function of an object point. When
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Figure 56. Point Spread Function, 1D. When image formation is performed via pro-
jection of the light field, sloped lines within the light field (a) will be spread across a
range of image pixels. This distribution, which can be envisioned as the histogram in
(b), determines point spread functions for objects at this depth, visualized in (c).

the photo-consistency (variance) is low, this is because the samples associated with

a single object point are gathered together under a single image pixel, rather than

spread across neighboring pixels where they would reduce spatial image gradients.

In order to consider the effects of defocus on imagery, it is necessary to know the

defocus-induced point spread function. Fig. 56 illustrates the formation of the PSF

for a two dimensional slice of the light field. A defocused point is represented by a

sloped line within the light field, and the image formation operation projects the line

down into one dimension. The projection of the line is then equal to the point spread

function for an object at the distance giving a line of that slope. The projection

operation consists of counting up the number of u samples associated with each s

sample. This same approach can be utilized for the case of the 2D PSF generated

from the 4D light field, as illustrated in Fig. 57. The light field slope dictates the

range of (u, v) samples over which each (s,t) sample is spread. The resulting PSF is

a disk with radius r = m̄Nu∆u/2∆s = m̄D/2∆s.
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Figure 57. Point Spread Function. The projection required to form the 2D PSF is
visualized more easily as counting up the number of angular samples associated with
each spatial sample.

Fourier Domain Ranging.

Ranging in the Fourier domain attempts to determine the planes in object space

which contain objects by searching for slices of the Fourier transformed light field

which contain large amounts of high spatial frequency content. In general, this in-

volves weighting spectral intensities by some increasing function of spatial frequency,

and then summing to provide an image sharpness metric. A simple linear weighting

was found to yield good results.

As demonstrated in the next section, this method can provide good results when

there is only one object in the scene. However, when multiple objects having different

depths exist in the scene, the method can have difficulty distinguishing them. This is

because the sharpness metric curve associated with a single object can be very broad,

with energy slowly receding into lower spatial frequency regions as an object becomes

out of focus. These curves can blend together or overwhelm one another, such that

planes containing objects do not appear as local maxima in the curve.

Fourier domain ranging is highly sensitive to aliasing and other Fourier reconstruc-

tion artifacts. When simple cubic interpolation is used to slice an image spectrum for
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the transformed light field, these artifacts manifest as high spatial frequency content

peaking at m = 0, and dying away as |m| increases. This can cause the approach to

fail in the same way that it is liable to fail for multiple objects at different depths.

Reconstruction using a Kaiser-Bessel filter, as discussed in [11], was found to amelio-

rate this effect. However, the recommended zero-padding of the light field prior to

Fourier transforming was observed to introduce a harmful ‘ringing’ effect.

Fourier Ranging Resolution.

In this section, we develop a simple model for estimating the depth resolving

capability attainable via ranging in the Fourier domain. Because Fourier domain

ranging is a global operation, it is easy for small objects to be overwhelmed by

more dominant objects in the scene. In this section, we address the cause of this

phenomenon, and provide a depth resolution expression for two objects in a scene

having about the same size and characteristics.

To start out generally, we assume that the scene consists of N1 delta functions

at slope m1 and N2 delta functions at m2. Based on the discussion of the previous

section, the refocused image will be given by a depth dependent blurring of the scene.

For simplicity, we replace the disc-shaped Point Spread Function of the previous

section with a Gaussian kernel having σ = r/2, given by

k(x, y) =
1√

2πσ2
exp

(
x2 + y2

2σ2

)
. (116)

The refocused image is given by the convolution of the delta functions with the

appropriate Gaussian kernel.

im(x, y) =

N1∑
i=1

δ(x− x1
i , y − y1

i ) ∗ k1(x, y) +

N2∑
i=1

δ(x− x2
i , y − y2

i ) ∗ k2(x, y). (117)
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We define g(kx, ky) = FT 2[im(x, y)] as the Fourier transform of the refocused image.

Via the convolution, shift, and linearity properties of the Fourier transform, g(kx, ky)

is given by

g(kx, ky) = k̂1(kx, ky)

N1∑
i=1

e−2πi(x1i kx+y1i ky) + k̂2(kx, ky)

N2∑
i=1

e−2πi(x2i kx+y2i ky). (118)

The summands are plane waves whose frequency and direction of propagation are

determined by the delta function locations (xi, yi). These plane waves determine the

fabric of Fourier space, the intensity of which is then modulated by the Fourier trans-

formed Gaussian kernels. It is difficult to simplify further without making further

assumptions about the structure of the image. We make a large simplification by

assuming that for our purposes the distribution in Fourier space can be adequately

represented by a uniform distribution multiplied by a weighting factor which corre-

sponds to the overall ‘prominence’ of the objects at each slope within the scene. In

reality, this means reducing the initial distribution of delta functions to one weighted

delta function at (x = 0, y = 0) for each depth:

g(kx, ky) = W1k̂1(kx, ky) +W2k̂2(kx, ky). (119)

The Fourier transform of the Gaussian convolution kernel is a second Gaussian with

inverted variance:

k̂ =

√
2

π
exp

(
−2π2σ2(k2

x + k2
y)
)
. (120)

Image sharpness is quantified by a metric which measures the amount of energy at

high spatial frequencies in the image. Here, the g(kx, ky) is multiplied by a parabolic
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weighting function and then summed:

metric =

∫ 1/2

−1/2

∫ 1/2

−1/2

(k2
x + k2

y)|g(kx, ky)|dkxdky. (121)

For a single delta function with a weight of unity, this integral may be solved approx-

imately in polar coordinates, as in

metric =

∫ 2π

0

∫ 1/2

0

r2|g(r)|rdrdθ (122)

Via integration by parts, this is solved by

metric =
1

a2

[
1− exp

(
−a

4

)(
1 +

a

4

)]
(123)

where a = 2π2σ2. This expression approaches a limit of 1/32 at a = 0, and a second

derivative of 1/1024. It is fairly well approximated by the Gaussian having these

same properties,

metric ≈ 1

32
exp

(
− a

4
√

2

)
. (124)

Upon substituting, consecutively, for a, σ, and r, we get the metric in terms of slope,

m, which is given by

metric = exp

(
−π

2D2(m−m1)2

32
√

2∆s2

)
= exp

(
−(m−m1)2

2α2

)
(125)

where α = 4(21/4)∆s/πD, and m is the slope at which the light field is sheared to

produce the image. The multiplicative factor has been dropped, since only relative

scale is important.
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Figure 58. Sparrow Resolvability Criterion. Under the sparrow resolvability criterion,
two peaks are considered resolved at the separation which produces a point where the
first and second derivatives of the combined curve jointly go to zero.

Without loss of generality, we let one object be located at m1 = 0, and the other

be located some interval ∆m away. The total metric is then given by

metric = W1 exp

(
−m

2

2α2

)
+W2 exp

(
−(m−∆m)2

2α2

)
. (126)

The question we seek to investigate is how close the two objects can be in slope space

before the two peaks can no longer be resolved. The Sparrow resolvability criterion

specifies the point beyond which the two objects will no longer produce two distinct

maxima (the point at which the intervening minimum disappears). This occurs where

both the first and second derivative of the combined signal are simultaneously zero.

Fig. 58 gives a graphical illustration.

Unfortunately, for two Gaussian functions of unequal size, the separation that

satisfies this criterion cannot be solved analytically. For the case where W1 = W2,

the criterion is satisfied at

∆m = 2α =
8(21/4)∆s

πD
. (127)
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Or, in terms of the sampled light field slope, m̄ = m∆u/∆s,

∆m̄ =
8(21/4)

πNu

. (128)

Fig. 59 provides an experimental assessment of this expression, using the Lytro Light

Field Camera. The Lytro camera has approximately 11x11 subpixels per microlens,

and thus the minimum slope separation evaluates to ∆m̄ = 0.28. In the experimental

tests, the minimum separation for two objects was seen to be two or three times this

value. A piece of the explanation may involve the fact that only two orthogonal strips

of the Fourier transformed light field were used in forming the metric due to speed

considerations. The theory and experimental results do agree that Fourier domain

ranging is not highly effective at distinguishing objects in a scene, compared to other

methods. Some possible approaches to more effective Fourier domain ranging would

be a) to split up the light field into spatial segments and apply the method separately

to each segment, or b) to fit a Gaussian to the most prominent peak in the metric

and then extract its contribution in order to see if any other peaks are made visible.

Camera Calibration.

The relationship between light field slope and object distance is given by

m̄ =

(
1− lm

f
+
lm
zo

)
γ. (129)

This relationship involves the main lens focal length, the distance from the main lens

to the microlens plane, and implicitly parameters such as the main lens diameter and

microlens size. This research was performed partly with a camera for which these

parameters were not known. Thus, the relationship between light field slope and
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Figure 59. Fourier Ranging Test: An experimental assessment of the ability to resolve
objects using Fourier domain ranging. The minimum resolvable separation is several
times larger than predicted by the simplified model. However, both results indicate
that Fourier domain ranging is not well suited to resolving details about a scene when
applied globally.
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Figure 60. Camera Calibration Target. Checkered grids of varying size were used so
that regions of the pattern would remain sharp under camera MTF effects as the target
grew more distant.

object distance was determined empirically by imaging a target (See Fig. 60) at a set

of known distances.

The Fourier domain ranging method provides a convenient approach for perform-

ing this calibration since it naturally gives the distance of the most prominent object

in a scene, and there is no need to attempt the removal of noisy depth estimates

occurring in previously discussed methods where image gradient is low.

Fig. 61 shows a comparison of the Fourier domain image sharpness metric with

a number of alternative metrics. Metric #2 was formed by spatially refocusing the

image and then taking its Fourier transform. Metric # 3 is simply a plot of the max-

imum gradient magnitude contained in a spatially refocused image. The methods

show good agreement concerning the slope corresponding to maximum image sharp-

ness. The Fourier domain metric is preferable since it avoids the expensive spatial

refocusing step required by the other methods.
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sum of spectral intensities.
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Figure 62. Camera Calibration Plots. Slope measurements obtained for a target at
increasing distances from the camera are shown in (a). Plot (b) demonstrates the
linear relationship between z−1

o and m̄. The residuals of the slope estimation, shown in
(c), maintain a regular magnitude as the slope changes. However, since ∆so ∝ s2

o∆m,
uncertainty in distance estimation does not remain constant, as demonstrated in (d).

Fig. 62 shows the results of a 100-point calibration using a constant 90px by 30px

spatial region of the light field, cropped prior to Fourier transformation. Fig. 62b

illustrates the linear relationship between z−1
o and the quantized slope, m̄, defined

in Eq. 129. The fit to this line provides the information needed to use the camera

for absolute ranging. The magnitude of the residual between this fit and the slope

estimate (See Fig. 62c) spans a similar range as the slope changes. However, as

object distance increases, slope estimation errors are amplified, such that the depth

estimation error increases quadratically with distance, as seen in Fig. 62d.
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4.6 Summary

A major goal of this chapter was to develop models for describing the behavior of

the sampled light field slope uncertainty, σm̄, in terms of attributes of the sampled

light field, such as the number of subapertures Nu, the image gradient ḡ, and the

degree of noise, σ. Such a model is the key piece of a generalized uncertainty model,

since the sampled light field slope uncertainty can be directly translated to a distance

uncertainty as long as various camera parameters are known. Though the chapter

derives several such analytic models, the models do not consistently line up with

empirical uncertainties calculated using synthetic light fields.

In the case of feature matching, theoretical modeling indicates that σqm should

diminish as Nu is increased due to the additional samples provided to the simple

linear regression. However, the observed fall-off is weaker than expected. Further

investigation is needed to determine if the discrepancy results from faulty assumptions

made about the nature of the localization error of the feature detector (namely, that

it is normally distributed).

For the photo-consistency method, theoretical modeling indicates that σqm should

decrease as Nu increases due to what is effectively an improvement in the signal to

noise ratio of the photo-consistency curve. This type of behavior is observed, but not

in a manner that consistently follows the analytic model. The discrepancy is likely

due to the existence of a behavior not accounted for by the analytic model, in which

the mean square error for an entire light field becomes coupled to the size of the

range of slopes used to perform the initial shearing of the light field. To achieve more

conclusive demonstration of agreement between the theoretical model and empirical

results, it will be necessary to avoid this coupling or to find a meaningful uncertainty

metric that avoids this problem.
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Finally, for the case of Fourier domain ranging, both theoretical and empirical

results indicate that the performance of this method is much inferior to that of the

spatial domain methods. Therefore, this method is not of further interest for our

purposes.

In the absence of a theoretical model that consistently describes the behavior of

the sampled slope uncertainty, σm̄, the empirical results provided in the preceding

sections, and summarized in Table 5, can be scaled to provide range uncertainties for

an arbitrary camera. The table gives the average empirical sampled slope uncertain-

ties yielded by the feature matching and photo-consistency methods for the case of

zero noise added to the light field. In viewing the table, it is good to keep in mind

that the number of depth estimations provided by the SIFT method is much less than

that generated by the photo-consistency method.

Table 5. Empirical Values of Sampled Slope Uncertainty, σm̄, for Zero Added Noise.

Method Nu = 3 Nu = 5 Nu = 7 Nu = 9

SIFT (Fig. 37a) 0.100 0.082 0.077 0.075
SIFT (Fig. 37b, Changing ∆s) 0.228 0.118 0.074 0.069
SIFT (Fig. 37b, Changing ∆q) 0.229 0.133 0.100 0.074
SIFT (Avg) 0.186 0.111 0.084 0.073

Photo-Consistency (Fig. 50 ) 0.122 0.104 0.099 0.094
Photo-Consistency (Fig. 52) 0.310 0.178 0.126 0.094
Photo-Consistency (Avg) 0.216 0.141 0.113 0.094

As discussed in the chapter introduction, the sampled light field slope uncertainties

provided in the table can be scaled to the continuous light field slope uncertainties

by

σm = σm̄/γ = σm̄
∆s

∆u
. (130)

Applying the substitutions ∆s = Nu∆q and ∆u = D/Nu, we see that

σm =
∆q

D
N2
uσm̄. (131)
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Via Eq. 64, which relates the continuous slope uncertainty to distance uncertainty,

the distance uncertainty is then given by

σz =
z2
o

lm

∆q

D
N2
uσm̄. (132)

Typically, the value of σm̄ in Table 5 does not fall with Nu rapidly enough to

counter the N2
u factor in this equation. For this reason, a choice of Nu = 3 is op-

timal because it minimizes uncertainty while allowing for application of the photo-

consistency method. Since lowering Nu while maintaining a constant detector size ∆q

is achieved by reducing the microlens size ∆s, this also has the advantage of a higher

spatial sampling rate at the microlens plane. There may be a practical limit to how

small Nu may become under the traditional plenoptic camera framework. If this is the

case, the focused plenoptic camera provides a viable alternative, since it can mimic

the performance of a traditional plenoptic camera while using larger microlenses (see

the equivalences in Table 3).

Choosing Nu = 3 and picking a value of σm̄ ∼ 0.1 from the table gives an empirical

range uncertainty formula, which will be explored in the next chapter:

σz ≈
z2
o

lm

∆q

D
. (133)
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V. Plenoptic Camera Utility

The previous chapter provides the following empirical expression for the range

uncertainty of a camera with Nu = 3 subapertures.

σz ≈
z2
o

lm

∆q

D
. (134)

This chapter will use this equation to provide an assessment of the applications for

which plenoptic camera is well suited. Strictly speaking, the equation relates uncer-

tainty to lm, the distance from the main lens plane to the microlens plane. However,

in order to avoid the light field spreading effects discussed in section 3.4, lm must

be on the same order as f , the main lens focal length. Thus, we represent f rather

than lm as the limiting factor in depth uncertainty. Uncertainty is then reduced by

minimizing pixel size, ∆q, or maximizing the focal length, f , and lens diameter, D.

To make Eq. 134 easy to grasp, its results are visualized in Fig. 63 for three sample

cameras. The camera specifications were selected to nominally represent cameras from

three different application regimes. The space-based camera has dimensions similar to

that of the Hubble space telescope. The airborne camera is sized such that it might

feasibly be mounted on some type of manned aircraft or UAV. The ground-based

camera might be wielded by a small scale robot interacting with nearby objects. The

space-based camera experiences uncertainty on the order of 10 meters at a distance

of 50km. The airborne camera yields comparable uncertainty at a distance of 500

meters. The robotic camera has an uncertainty of 1 meter for a point around 25

meters away. The logarithmic scale in Fig. 64 is useful for assessing the performance

of each camera over a broader range of distances. For more general purposes, Fig. 65

provides a nomograph usable for determining the uncertainty of an arbitrary camera.
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Figure 63. Plenoptic Camera Performance Regimes. The space-based camera expe-
riences uncertainty on the order of 10 meters at a distance of 50km. The airborne
camera yields comparable uncertainty at a distance of 500 meters. The robotic camera
has an uncertainty of 1 meter for a point around 25 meters away.
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Figure 65. Uncertainty Nomograph. The nomograph can be used to determine the
ranging uncertainty for a camera with arbitrary parameters. The paths plotted corre-
spond roughly to the notional cameras presented in Fig. 63.
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5.1 Remote Sensing Application

The modern remote sensing landscape is outfitted with a variety of solutions for

obtaining depth information. Two such methods include aerial photogrammetry and

lidar. Photogrammetry is the process of extracting real-world position information

from images of objects. In the era of film photography, stereo-plotters enabled cartog-

raphers to identify correspondences between overlapping images taken by an airborne

camera. The development of Lidar, a technology which analyzes the reflected re-

sponse from an active light signal to determine distance, provided advantages over

the photogrammetric process both in terms of precision and automated workflow.

These initial advantages appear to have given the technology a large user base within

the remote sensing community [33].

Lidar systems achieve accurate depth estimations typically by measuring the time

of flight of a laser pulse reflected from a surface back toward the receiver. Since Lidar

does not depend on parallax in obtaining depth, its depth resolution performance is

largely independent of distance, as long as the laser source is powerful enough and

the detector sensitive enough for the signal to be registered after propagating the full

distance.

In spite of the lead taken by Lidar within the remote sensing field, a combination

of factors including the proliferation of high resolution digital imagers, the advance-

ment of the graphics processing unit, and the fruition of automated feature matching

techniques developed within the computer vision community have brought new vi-

tality to an era of digital photogrammetry, in which 3D maps can be generated with

comparable accuracy and greater efficiency than afforded by laser scanning techniques

[33]. Due to the greater complexity of lidar systems, photogrammetry also tends to

offer a significant cost advantage.
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Lidar and Photogrammetry are held to standards of accuracy set within the remote

sensing community. The United States National Map Accuracy Standards (NMAS)

specify tolerances for contour maps generated from 3D geographic data, [34]. This

standard specifies that “not more than 10 percent of the elevations tested shall be in

error more than one-half the contour interval.” More recent standards specify stricter

tolerances [35], and typical contour intervals range from 0.5 feet to 10 feet [36]. Users

of Lidar systems are typically able to certify their results to the 1’ contour interval

NMAS standard [37].

Fig. 63 illustrates that, for practical airborne and orbital altitudes, this level of

accuracy is not attainable. Simply put, since the plenoptic camera does not signifi-

cantly improve upon the ranging performance afforded by a stereo system, it is not

surprising that it is not a suitable candidate for 3D terrestrial mapping from airborne

and orbital platforms.

5.2 Autonomous Navigation

Though the accuracy afforded by plenoptic camera ranging is most likely not

well-suited to terrestrial mapping applications, the camera does afford the sort of

accuracy appropriate for the task of autonomous navigation. This is not surprising,

since the performance of the plenoptic camera is demonstrated within this thesis to

be very comparable to that of stereo ranging systems, which are commonly employed

for robotic applications.

As a monocular system, the plenoptic camera provides a passive ranging option

that requires a minimal amount of hardware and space. Light field ranging techniques

such as the photo-consistency method discussed in this thesis may offer advantages

over standard approaches in terms of ease of implementation and computational load.
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These advantages make the plenoptic camera a likely choice for incorporation on a

small, autonomous robotic system

Other technologies employed within this regime include structured light scanning

and time of flight cameras. Though these technologies are often able to provide

better accuracy than the plenoptic camera, as active techniques they involve increased

complexity and expense. Unlike passive, image-correspondence based systems, these

technologies do not simultaneously provide depth information and imagery. The need

for a separate camera to provide imagery further increases the complexity, bulk, and

expense of such a system.

5.3 3D Video

The ability to simultaneously collect imagery and depth information, with poten-

tial for real time processing, all with a single aperture camera, makes it difficult not

to imagine easily recording 3D videos with a plenoptic camera. Outside of the realm

of entertainment, this technology has applications that will probably only be fully

understood as it matures and proliferates.

As technologies for displaying 3D video reach greater maturity, it seems likely that

3D video will come to play a stronger role in allowing intelligence analysts or central

command headquarters to receive a better understanding of a tactical situation via

3D cameras deployed to the site of operations. This will lead to an increased demand

for devices capable of capturing 3D video at minimal cost and operational difficulty.

The plenoptic camera stands alongside other technologies, like stereoscopic cameras,

in a position to fulfill this need.

Fig. 63 indicates that a plenoptic camera mounted on board a UAV would likely

yield only coarse landscape depth information when operating at typical altitudes.

In contrast, a hand-held or helmet-mounted camera might more easily succeed at
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providing meaningful 3D interaction with objects within 10 to 20 meters of the ob-

server. Security cameras of this scale might also provide additional detail sufficient

to improve facial identification.

5.4 Future Development

In the near future, the plenoptic camera appears likely to find its most comfortable

applications in the domains of small scale autonomous robots, hand-held 3D video

recording, and any other systems requiring passively-obtained depth information for

close ranges. Various advancements stand to extend this application space.

Advancements in the availability of cheap, light-weight, large-diameter optics may

play a part in making larger scale plenoptic range cameras practical. Eq. 134 indicates

that increasing the diameter of the camera’s aperture leads to significant improvement

in depth resolution ability. The plenoptic camera may assist in this effort by allowing

for computational correction of optical aberrations. Aberrations tend to affect how

different regions of a collecting lens map object points to the imaging plane, resulting

in a broadened point spread function for the system. By separately collecting light

from different aperture regions, the plenoptic camera allows for the mapping from

each subaperture to be separately modified, in order to tighten the overall point

spread function. The demonstration of this capability is presented in [4].

Future iterations of the plenoptic camera may no longer use microlenses to achieve

angular sensitivity. Angularly sensitive pixels have been demonstrated which use

stacked gratings to selectively transmit light [38]. Other sensor designs integrate

optical elements directly into the detector [39]. The focused plenoptic camera model

allows for gaps between the apertures to exist without resulting in spatial sampling

gaps. These gaps in turn allow for a sensor design which enables smaller pixel sizes

than is otherwise achievable, though at the cost of a lower SNR [39]. Any of these
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technologies, by yielding an angularly-sensitive pixel smaller than the combination

of pixels and lenses employed within lenslet based plenoptic cameras, could feasibly

provide a significant improvement to range performance.
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VI. Conclusion

6.1 Contributions

This thesis contains a number of contributions to the literature relating to plenop-

tic cameras. At the level of general plenoptic imaging, the thesis improves upon pre-

vious descriptions of the role of diffraction within a plenoptic camera, as in [4]. In

particular, the effects of diffraction are described comprehensively and quantitatively,

and it is shown that it is impossible to achieve critical sampling for all four dimension

of the light field. Again, with respect to plenoptic imaging, the thesis provides a

link between the traditional plenoptic camera [4], and the ‘focused’ plenoptic camera

[24], eliminating any notion of a fundamental disparity in the capabilities of the two

approaches.

Finally, the thesis provides novel analytic models for describing the uncertainty

in the plenoptic camera’s ranging uncertainty for a number of estimation frame-

works. For example, though depth estimation using the photo-consistency technique

described here has been previously demonstrated in [7], no characterization of the

estimation uncertainty is provided. Again, plenoptic rangefinding within the Fourier

domain is described in [12] absent of any model for range uncertainty. This thesis

supplies these techniques with models which describe the scale of the uncertainty to

be expected, as well as the behavior of the uncertainty as various camera param-

eters of varied. The outcome of these models is a recommendation concerning the

camera construction yielding the best overall performance for the purposes of range

estimation.

127



6.2 Future Work

Within the realm of plenoptic ranging itself, much can be done and has been done

beyond the techniques described within this thesis. However, the comments here will

be limited to work that might be done to improve upon the uncertainty modeling

which constituted the primary task of this thesis. Improvements in this regard might

conceivably take two forms.

First, none of the models presented in this thesis deal adequately with the impact

of sampling on the image characteristics which ultimately relate to ranging accuracy.

The model dealing with accuracy in the context of feature matching makes no attempt

to describe the behavior of the localization error of the feature detecting algorithm.

For the photo-consistency method, uncertainty is modeled in terms of the local gra-

dient strength of the light field. However, there is no straightforward relationship

between a gradient within a continuous image and the gradient within a sampled or

blurred image. Rather, the effects of sampling and blurring are best understood with

respect to image spatial frequencies. For a more robust uncertainty characterization,

it would be necessary either to find a better description of the behavior of image gra-

dients under resampling, or to formulate uncertainty in terms of the spatial frequency

content of an image.

A different possibility would be to take a more empirical approach to uncertainty

by using a large sample set with a variety of estimation methods to create a database

describing the performance of different approaches in various scenarios. Both efforts

would be aided by an improved plenoptic camera simulation framework. The syn-

thetic light fields used within this research are suspect because they arise from an

approach which generates subaperture images using simulated ‘pinhole’ cameras. Sec-

tion 3.3 illustrates that subaperture images will not always have the depth of field

characteristics of such a ‘pinhole image.’ An improved simulation framework might
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also include diffraction and optional lens aberrations. Finally, a simulation employ-

ing accurate radiometry would assist correctly modeling signal to noise ratio, which is

demonstrated in this thesis to strongly effect ranging performance. A simulation in-

corporating all of these elements would be crucial in any effort to create a meaningful

database of range estimation performance.

6.3 Final Remarks

The plenoptic camera is a milestone device which promises to help usher in a new

era of computational photography. The plenoptic camera’s striking ability to render

refocused images stems from the fact that it samples the 4D radiance distribution at

its detector plane, rather than the 2D intensity distribution sampled by conventional

cameras. When this distribution is formulated as a light field, a sequence of shearing

and projecting the light field imitates the image formation process of a conventional

camera with adjustable focal length.

The light field is distinguished from data sets collected by stereoscopic systems

because it contains images obtained by an N by N grid of apertures, rather than just

the two apertures of the stereoscopic system. Though these additional views enable

the camera to perform novel functions like the generation of refocused imagery, it is

not clear that they provide a significant advantage in terms of depth resolution.

Though theoretical considerations within this paper indicate that increasing the

angular sampling density of the camera, all other things fixed, should result in a better

rangefinding accuracy, experimental results indicate that the improvement may be

fairly minimal. This means that, when there is a choice between spatial and angular

resolution, as in the tradeoff induced by varying the microlens size in a conventional

plenoptic camera, it is typically desirable to maximize spatial resolution.
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Though the effectiveness of light field ranging techniques compares closely to that

of techniques employed in stereoscopic computer vision, the plenoptic camera may still

offer practical advantages in terms of its small footprint, low cost, and minimal need

for calibration. At its present level of development, the plenoptic camera fits nicely

into an application space that includes robotic navigation, 3D video recording, and

security monitoring. This application space may continue to expand as developing

technologies allow the camera to achieve acceptable accuracy at greater ranges.
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Appendix A. Projection Slice Theorem

In this appendix, we show that the sequence of shearing, projecting, and Fourier

transforming the light field is equivalent to the sequence of Fourier transforming,

shearing, and slicing. We confine the math to the two dimensions s and u. However,

extension to the full 4D case is straightforward. For this appendix, we drop the

convention of representing normalized coordinates with over-bars. The goal is to

show the following equality:

(FT ◦ P ◦ Bm̄)[L(x)] = (S ◦ B̄−Tm̄ ◦ FT 2)[L(x)]. (135)

The various operators employed are defined in Table 6.

Eq. 135 is demonstrated by simply following the two sequences of operations and

manipulating the result to show equivalence. The first consists of shearing, projecting,

and taking the Fourier transform. The shearing operator is applied first:

Bm̄[L(x)](x) = L(B−1
m̄ x) = L (s+ m̄u, u) . (136)

This is followed by projection,

(P ◦ Bm̄)[L(x)](s) =
Nu−1∑
u=0

L (s+ m̄u, u) , (137)

and finally, a one-dimensional Fourier transform,

(FT ◦ P ◦ Bm̄)[L(x)](ks) =
Ns−1∑
s′=0

Nu−1∑
u=0

L(s′ + m̄u, u) exp

(
−2πi

kss
′

Ns

)
. (138)
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Table 6. Operator Definitions

Description Symbol Definition

1D Fourier Transform FT [f(s)](ks)
Ns−1∑
s=0

f(s) exp

[
−2πi

(
ks

s

Ns

)]

Projection P [f(x)](s)
Nu−1∑
u=0

f(s, u)

Shear B[f(x)](x) f(B−1x) Bm̄ =

[
1 −m̄
0 1

]
Slice S[f(k)](ks) f(ks, 0)

Modified Shear B̄[f(x)](x) f(B̄−1x) B̄m̄ =

[
1 −m̄Nu/Ns

0 1

]

2D Fourier Transform FT 2[K(x)](k)
Ns−1∑
s=0

Nu−1∑
u=0

K(s, u) exp

[
−2πi

(
ks

s

Ns

+ ku
u

Nu

)]

We use the substitution s = s′ + m̄u to slightly alter the form of the equation:

(FT ◦ P ◦ Bm̄)[L(x)](ks) =
Ns−1∑
u=0

Nu−1+m̄u∑
s=m̄u

L(s, u) exp

(
−2πi

ks
Ns

(s− m̄u)

)
. (139)

The second route is to take the 2D Fourier transform of the light field, and then

to extract a slice at the correct angle. Here, angled slicing is represented by applying

the modified shear operator (B̄), and then taking the central angular slice. First, we

apply to 2D Fourier transform:

G(k) = FT 2[L(x)](k) =
Ns−1∑
s=0

Nu−1∑
u=0

L(s, u) exp

(
−2πi

(
ks

s

Ns

+ ku
u

Nu

))
. (140)

Next, the modified shearing operator:

(B̄−Tm̄ ◦FT 2)[L(x)](k) = B̄−Tm̄ [G(k)](k) = G
(
B̄Tm̄k

)
= G

(
ks,−m̄

Nu

Ns

ks + ku

)
. (141)
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Finally, the slicing operator sets ku to zero:

(S ◦ B̄−Tm̄ ◦ FT 2)[L(x)](ks) = G

(
ks,−m̄

Nu

Ns

ks

)
=

Ns−1∑
s=0

Nu−1∑
u=0

L(s, u) exp

(
−2πi

ks
Ns

(s− m̄u)

)
. (142)

Comparison reveals that Eqs. 139 and 142 are identical, save a minor difference

in the limits of the summation in s.
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